Metamath Proof Explorer


Theorem dnibndlem5

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Assertion dnibndlem5 A 0 < A + 1 2 + 1 2 - A

Proof

Step Hyp Ref Expression
1 id A A
2 halfre 1 2
3 2 a1i A 1 2
4 readdcl A 1 2 A + 1 2
5 1 3 4 syl2anc2 A A + 1 2
6 flltp1 A + 1 2 A + 1 2 < A + 1 2 + 1
7 5 6 syl A A + 1 2 < A + 1 2 + 1
8 ax-1cn 1
9 2halves 1 1 2 + 1 2 = 1
10 8 9 ax-mp 1 2 + 1 2 = 1
11 10 eqcomi 1 = 1 2 + 1 2
12 11 a1i A 1 = 1 2 + 1 2
13 12 oveq2d A A + 1 2 + 1 = A + 1 2 + 1 2 + 1 2
14 reflcl A + 1 2 A + 1 2
15 5 14 syl A A + 1 2
16 15 recnd A A + 1 2
17 3 recnd A 1 2
18 16 17 17 3jca A A + 1 2 1 2 1 2
19 addass A + 1 2 1 2 1 2 A + 1 2 + 1 2 + 1 2 = A + 1 2 + 1 2 + 1 2
20 18 19 syl A A + 1 2 + 1 2 + 1 2 = A + 1 2 + 1 2 + 1 2
21 20 eqcomd A A + 1 2 + 1 2 + 1 2 = A + 1 2 + 1 2 + 1 2
22 13 21 eqtrd A A + 1 2 + 1 = A + 1 2 + 1 2 + 1 2
23 7 22 breqtrd A A + 1 2 < A + 1 2 + 1 2 + 1 2
24 15 3 jca A A + 1 2 1 2
25 readdcl A + 1 2 1 2 A + 1 2 + 1 2
26 24 25 syl A A + 1 2 + 1 2
27 1 26 3 ltadd1d A A < A + 1 2 + 1 2 A + 1 2 < A + 1 2 + 1 2 + 1 2
28 23 27 mpbird A A < A + 1 2 + 1 2
29 1 26 posdifd A A < A + 1 2 + 1 2 0 < A + 1 2 + 1 2 - A
30 28 29 mpbid A 0 < A + 1 2 + 1 2 - A