| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 3 |
2
|
a1i |
|- ( A e. RR -> ( 1 / 2 ) e. RR ) |
| 4 |
|
readdcl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
| 5 |
1 3 4
|
syl2anc2 |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) e. RR ) |
| 6 |
|
flltp1 |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( A + ( 1 / 2 ) ) < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
| 7 |
5 6
|
syl |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
| 8 |
|
ax-1cn |
|- 1 e. CC |
| 9 |
|
2halves |
|- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 10 |
8 9
|
ax-mp |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 11 |
10
|
eqcomi |
|- 1 = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
| 12 |
11
|
a1i |
|- ( A e. RR -> 1 = ( ( 1 / 2 ) + ( 1 / 2 ) ) ) |
| 13 |
12
|
oveq2d |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 14 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
| 15 |
5 14
|
syl |
|- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
| 16 |
15
|
recnd |
|- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
| 17 |
3
|
recnd |
|- ( A e. RR -> ( 1 / 2 ) e. CC ) |
| 18 |
16 17 17
|
3jca |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) ) |
| 19 |
|
addass |
|- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 20 |
18 19
|
syl |
|- ( A e. RR -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 21 |
20
|
eqcomd |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 22 |
13 21
|
eqtrd |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 23 |
7 22
|
breqtrd |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 24 |
15 3
|
jca |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) ) |
| 25 |
|
readdcl |
|- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) |
| 26 |
24 25
|
syl |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) |
| 27 |
1 26 3
|
ltadd1d |
|- ( A e. RR -> ( A < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) <-> ( A + ( 1 / 2 ) ) < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) ) |
| 28 |
23 27
|
mpbird |
|- ( A e. RR -> A < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
| 29 |
1 26
|
posdifd |
|- ( A e. RR -> ( A < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) <-> 0 < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) ) |
| 30 |
28 29
|
mpbid |
|- ( A e. RR -> 0 < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) |