Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A e. RR -> A e. RR ) |
2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
3 |
2
|
a1i |
|- ( A e. RR -> ( 1 / 2 ) e. RR ) |
4 |
|
readdcl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
5 |
1 3 4
|
syl2anc2 |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) e. RR ) |
6 |
|
flltp1 |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( A + ( 1 / 2 ) ) < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
7 |
5 6
|
syl |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
|
2halves |
|- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
10 |
8 9
|
ax-mp |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
11 |
10
|
eqcomi |
|- 1 = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
12 |
11
|
a1i |
|- ( A e. RR -> 1 = ( ( 1 / 2 ) + ( 1 / 2 ) ) ) |
13 |
12
|
oveq2d |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
14 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
15 |
5 14
|
syl |
|- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
16 |
15
|
recnd |
|- ( A e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
17 |
3
|
recnd |
|- ( A e. RR -> ( 1 / 2 ) e. CC ) |
18 |
16 17 17
|
3jca |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) ) |
19 |
|
addass |
|- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ ( 1 / 2 ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
20 |
18 19
|
syl |
|- ( A e. RR -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
21 |
20
|
eqcomd |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
22 |
13 21
|
eqtrd |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
23 |
7 22
|
breqtrd |
|- ( A e. RR -> ( A + ( 1 / 2 ) ) < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
24 |
15 3
|
jca |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) ) |
25 |
|
readdcl |
|- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) |
26 |
24 25
|
syl |
|- ( A e. RR -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) |
27 |
1 26 3
|
ltadd1d |
|- ( A e. RR -> ( A < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) <-> ( A + ( 1 / 2 ) ) < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) ) |
28 |
23 27
|
mpbird |
|- ( A e. RR -> A < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
29 |
1 26
|
posdifd |
|- ( A e. RR -> ( A < ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) <-> 0 < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) ) |
30 |
28 29
|
mpbid |
|- ( A e. RR -> 0 < ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) |