| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem6.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
dnibndlem6.2 |
|- ( ph -> B e. RR ) |
| 3 |
2
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) |
| 4 |
3
|
recnd |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. CC ) |
| 5 |
1
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
| 6 |
5
|
recnd |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. CC ) |
| 7 |
4 6
|
subcld |
|- ( ph -> ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. CC ) |
| 8 |
7
|
abscld |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) e. RR ) |
| 9 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 10 |
9
|
a1i |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 11 |
4 10
|
subcld |
|- ( ph -> ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) e. CC ) |
| 12 |
11
|
abscld |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) e. RR ) |
| 13 |
10 6
|
subcld |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. CC ) |
| 14 |
13
|
abscld |
|- ( ph -> ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) e. RR ) |
| 15 |
12 14
|
readdcld |
|- ( ph -> ( ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) + ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) e. RR ) |
| 16 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 17 |
16
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 18 |
17 3
|
jca |
|- ( ph -> ( ( 1 / 2 ) e. RR /\ ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) ) |
| 19 |
|
resubcl |
|- ( ( ( 1 / 2 ) e. RR /\ ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) e. RR ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) e. RR ) |
| 21 |
17 5
|
jca |
|- ( ph -> ( ( 1 / 2 ) e. RR /\ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) ) |
| 22 |
|
resubcl |
|- ( ( ( 1 / 2 ) e. RR /\ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. RR ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. RR ) |
| 24 |
20 23
|
readdcld |
|- ( ph -> ( ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) + ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) e. RR ) |
| 25 |
4 6 10
|
3jca |
|- ( ph -> ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. CC /\ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. CC /\ ( 1 / 2 ) e. CC ) ) |
| 26 |
|
abs3dif |
|- ( ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. CC /\ ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) + ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) ) |
| 27 |
25 26
|
syl |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) + ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) ) |
| 28 |
4 10
|
abssubd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) = ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) ) |
| 29 |
|
rddif2 |
|- ( B e. RR -> 0 <_ ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) |
| 30 |
2 29
|
syl |
|- ( ph -> 0 <_ ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) |
| 31 |
20 30
|
absidd |
|- ( ph -> ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) = ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) |
| 32 |
28 31
|
eqtrd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) = ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) |
| 33 |
|
rddif2 |
|- ( A e. RR -> 0 <_ ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
| 34 |
1 33
|
syl |
|- ( ph -> 0 <_ ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
| 35 |
23 34
|
absidd |
|- ( ph -> ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) = ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
| 36 |
32 35
|
oveq12d |
|- ( ph -> ( ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) + ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) = ( ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) + ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) |
| 37 |
15 36
|
eqled |
|- ( ph -> ( ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( 1 / 2 ) ) ) + ( abs ` ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) <_ ( ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) + ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) |
| 38 |
8 15 24 27 37
|
letrd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) + ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) |