| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rddif |
|- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) ) |
| 2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 3 |
2
|
a1i |
|- ( A e. RR -> ( 1 / 2 ) e. RR ) |
| 4 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 5 |
4
|
dnicld1 |
|- ( A e. RR -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
| 6 |
3 5
|
subge0d |
|- ( A e. RR -> ( 0 <_ ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) <-> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) <_ ( 1 / 2 ) ) ) |
| 7 |
1 6
|
mpbird |
|- ( A e. RR -> 0 <_ ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |