Metamath Proof Explorer


Theorem dnibndlem1

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem1.1
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
dnibndlem1.2
|- ( ph -> A e. RR )
dnibndlem1.3
|- ( ph -> B e. RR )
Assertion dnibndlem1
|- ( ph -> ( ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ S <-> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ S ) )

Proof

Step Hyp Ref Expression
1 dnibndlem1.1
 |-  T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) )
2 dnibndlem1.2
 |-  ( ph -> A e. RR )
3 dnibndlem1.3
 |-  ( ph -> B e. RR )
4 1 dnival
 |-  ( B e. RR -> ( T ` B ) = ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) )
5 3 4 syl
 |-  ( ph -> ( T ` B ) = ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) )
6 1 dnival
 |-  ( A e. RR -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) )
7 2 6 syl
 |-  ( ph -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) )
8 5 7 oveq12d
 |-  ( ph -> ( ( T ` B ) - ( T ` A ) ) = ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) )
9 8 fveq2d
 |-  ( ph -> ( abs ` ( ( T ` B ) - ( T ` A ) ) ) = ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) )
10 9 breq1d
 |-  ( ph -> ( ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ S <-> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ S ) )