| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem1.1 |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
| 2 |
|
dnibndlem1.2 |
|- ( ph -> A e. RR ) |
| 3 |
|
dnibndlem1.3 |
|- ( ph -> B e. RR ) |
| 4 |
1
|
dnival |
|- ( B e. RR -> ( T ` B ) = ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( T ` B ) = ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
| 6 |
1
|
dnival |
|- ( A e. RR -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
| 7 |
2 6
|
syl |
|- ( ph -> ( T ` A ) = ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) |
| 8 |
5 7
|
oveq12d |
|- ( ph -> ( ( T ` B ) - ( T ` A ) ) = ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
| 9 |
8
|
fveq2d |
|- ( ph -> ( abs ` ( ( T ` B ) - ( T ` A ) ) ) = ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) ) |
| 10 |
9
|
breq1d |
|- ( ph -> ( ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ S <-> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ S ) ) |