Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem2.1 |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
dnibndlem2.2 |
|- ( ph -> A e. RR ) |
3 |
|
dnibndlem2.3 |
|- ( ph -> B e. RR ) |
4 |
|
dnibndlem2.4 |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) = ( |_ ` ( A + ( 1 / 2 ) ) ) ) |
5 |
|
halfre |
|- ( 1 / 2 ) e. RR |
6 |
5
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
7 |
3 6
|
jca |
|- ( ph -> ( B e. RR /\ ( 1 / 2 ) e. RR ) ) |
8 |
|
readdcl |
|- ( ( B e. RR /\ ( 1 / 2 ) e. RR ) -> ( B + ( 1 / 2 ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( ph -> ( B + ( 1 / 2 ) ) e. RR ) |
10 |
|
reflcl |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
11 |
9 10
|
syl |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
12 |
11
|
recnd |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. CC ) |
13 |
3
|
recnd |
|- ( ph -> B e. CC ) |
14 |
12 13
|
subcld |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) e. CC ) |
15 |
14
|
abscld |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) |
16 |
15
|
recnd |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. CC ) |
17 |
4 12
|
eqeltrrd |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
18 |
2
|
recnd |
|- ( ph -> A e. CC ) |
19 |
17 18
|
subcld |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) e. CC ) |
20 |
19
|
abscld |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
21 |
20
|
recnd |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. CC ) |
22 |
16 21
|
subcld |
|- ( ph -> ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. CC ) |
23 |
22
|
abscld |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) e. RR ) |
24 |
14 19
|
subcld |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. CC ) |
25 |
24
|
abscld |
|- ( ph -> ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. RR ) |
26 |
13 18
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
27 |
26
|
abscld |
|- ( ph -> ( abs ` ( B - A ) ) e. RR ) |
28 |
14 19
|
abs2difabsd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
29 |
12 18 13
|
nnncan1d |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) = ( B - A ) ) |
30 |
29
|
eqcomd |
|- ( ph -> ( B - A ) = ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
31 |
30
|
fveq2d |
|- ( ph -> ( abs ` ( B - A ) ) = ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) |
32 |
4
|
oveq1d |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - A ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) |
33 |
32
|
oveq1d |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
34 |
33
|
fveq2d |
|- ( ph -> ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) = ( abs ` ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) ) |
35 |
19 14
|
abssubd |
|- ( ph -> ( abs ` ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) = ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
36 |
31 34 35
|
3eqtrd |
|- ( ph -> ( abs ` ( B - A ) ) = ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) |
37 |
27
|
leidd |
|- ( ph -> ( abs ` ( B - A ) ) <_ ( abs ` ( B - A ) ) ) |
38 |
36 37
|
eqbrtrrd |
|- ( ph -> ( abs ` ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) <_ ( abs ` ( B - A ) ) ) |
39 |
23 25 27 28 38
|
letrd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( abs ` ( B - A ) ) ) |
40 |
1 2 3
|
dnibndlem1 |
|- ( ph -> ( ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ ( abs ` ( B - A ) ) <-> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( abs ` ( B - A ) ) ) ) |
41 |
39 40
|
mpbird |
|- ( ph -> ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ ( abs ` ( B - A ) ) ) |