Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem3.1 |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
dnibndlem3.2 |
|- ( ph -> A e. RR ) |
3 |
|
dnibndlem3.3 |
|- ( ph -> B e. RR ) |
4 |
|
dnibndlem3.4 |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
5 |
3
|
recnd |
|- ( ph -> B e. CC ) |
6 |
|
halfre |
|- ( 1 / 2 ) e. RR |
7 |
6
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
8 |
3 7
|
jca |
|- ( ph -> ( B e. RR /\ ( 1 / 2 ) e. RR ) ) |
9 |
|
readdcl |
|- ( ( B e. RR /\ ( 1 / 2 ) e. RR ) -> ( B + ( 1 / 2 ) ) e. RR ) |
10 |
8 9
|
syl |
|- ( ph -> ( B + ( 1 / 2 ) ) e. RR ) |
11 |
|
reflcl |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
13 |
12
|
recnd |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. CC ) |
14 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
15 |
14
|
a1i |
|- ( ph -> ( 1 / 2 ) e. CC ) |
16 |
13 15
|
subcld |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. CC ) |
17 |
2
|
recnd |
|- ( ph -> A e. CC ) |
18 |
5 16 17
|
3jca |
|- ( ph -> ( B e. CC /\ ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. CC /\ A e. CC ) ) |
19 |
|
npncan |
|- ( ( B e. CC /\ ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. CC /\ A e. CC ) -> ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - A ) ) = ( B - A ) ) |
20 |
18 19
|
syl |
|- ( ph -> ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - A ) ) = ( B - A ) ) |
21 |
20
|
eqcomd |
|- ( ph -> ( B - A ) = ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - A ) ) ) |
22 |
4
|
oveq1d |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) - ( 1 / 2 ) ) ) |
23 |
2 7
|
jca |
|- ( ph -> ( A e. RR /\ ( 1 / 2 ) e. RR ) ) |
24 |
|
readdcl |
|- ( ( A e. RR /\ ( 1 / 2 ) e. RR ) -> ( A + ( 1 / 2 ) ) e. RR ) |
25 |
23 24
|
syl |
|- ( ph -> ( A + ( 1 / 2 ) ) e. RR ) |
26 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
27 |
25 26
|
syl |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
28 |
27
|
recnd |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
29 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
30 |
28 29 15
|
3jca |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ 1 e. CC /\ ( 1 / 2 ) e. CC ) ) |
31 |
|
addsubass |
|- ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC /\ 1 e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) - ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 - ( 1 / 2 ) ) ) ) |
32 |
30 31
|
syl |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) - ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 - ( 1 / 2 ) ) ) ) |
33 |
|
1mhlfehlf |
|- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
34 |
33
|
a1i |
|- ( ph -> ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) ) |
35 |
34
|
oveq2d |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 - ( 1 / 2 ) ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
36 |
22 32 35
|
3eqtrd |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
37 |
36
|
oveq1d |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - A ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) |
38 |
37
|
oveq2d |
|- ( ph -> ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - A ) ) = ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) ) |
39 |
21 38
|
eqtrd |
|- ( ph -> ( B - A ) = ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) ) |
40 |
39
|
fveq2d |
|- ( ph -> ( abs ` ( B - A ) ) = ( abs ` ( ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) + ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) - A ) ) ) ) |