Metamath Proof Explorer


Theorem dnibndlem3

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem3.1 T = x x + 1 2 x
dnibndlem3.2 φ A
dnibndlem3.3 φ B
dnibndlem3.4 φ B + 1 2 = A + 1 2 + 1
Assertion dnibndlem3 φ B A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A

Proof

Step Hyp Ref Expression
1 dnibndlem3.1 T = x x + 1 2 x
2 dnibndlem3.2 φ A
3 dnibndlem3.3 φ B
4 dnibndlem3.4 φ B + 1 2 = A + 1 2 + 1
5 3 recnd φ B
6 halfre 1 2
7 6 a1i φ 1 2
8 3 7 jca φ B 1 2
9 readdcl B 1 2 B + 1 2
10 8 9 syl φ B + 1 2
11 reflcl B + 1 2 B + 1 2
12 10 11 syl φ B + 1 2
13 12 recnd φ B + 1 2
14 halfcn 1 2
15 14 a1i φ 1 2
16 13 15 subcld φ B + 1 2 1 2
17 2 recnd φ A
18 5 16 17 3jca φ B B + 1 2 1 2 A
19 npncan B B + 1 2 1 2 A B B + 1 2 1 2 + B + 1 2 1 2 - A = B A
20 18 19 syl φ B B + 1 2 1 2 + B + 1 2 1 2 - A = B A
21 20 eqcomd φ B A = B B + 1 2 1 2 + B + 1 2 1 2 - A
22 4 oveq1d φ B + 1 2 1 2 = A + 1 2 + 1 - 1 2
23 2 7 jca φ A 1 2
24 readdcl A 1 2 A + 1 2
25 23 24 syl φ A + 1 2
26 reflcl A + 1 2 A + 1 2
27 25 26 syl φ A + 1 2
28 27 recnd φ A + 1 2
29 1cnd φ 1
30 28 29 15 3jca φ A + 1 2 1 1 2
31 addsubass A + 1 2 1 1 2 A + 1 2 + 1 - 1 2 = A + 1 2 + 1 - 1 2
32 30 31 syl φ A + 1 2 + 1 - 1 2 = A + 1 2 + 1 - 1 2
33 1mhlfehlf 1 1 2 = 1 2
34 33 a1i φ 1 1 2 = 1 2
35 34 oveq2d φ A + 1 2 + 1 - 1 2 = A + 1 2 + 1 2
36 22 32 35 3eqtrd φ B + 1 2 1 2 = A + 1 2 + 1 2
37 36 oveq1d φ B + 1 2 - 1 2 - A = A + 1 2 + 1 2 - A
38 37 oveq2d φ B B + 1 2 1 2 + B + 1 2 1 2 - A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A
39 21 38 eqtrd φ B A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A
40 39 fveq2d φ B A = B B + 1 2 1 2 + A + 1 2 + 1 2 - A