| Step |
Hyp |
Ref |
Expression |
| 1 |
|
id |
|- ( B e. RR -> B e. RR ) |
| 2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 3 |
2
|
a1i |
|- ( B e. RR -> ( 1 / 2 ) e. RR ) |
| 4 |
1 3
|
readdcld |
|- ( B e. RR -> ( B + ( 1 / 2 ) ) e. RR ) |
| 5 |
|
flle |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) <_ ( B + ( 1 / 2 ) ) ) |
| 6 |
4 5
|
syl |
|- ( B e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) <_ ( B + ( 1 / 2 ) ) ) |
| 7 |
|
reflcl |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
| 8 |
4 7
|
syl |
|- ( B e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
| 9 |
8 3 1
|
lesubaddd |
|- ( B e. RR -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) <_ B <-> ( |_ ` ( B + ( 1 / 2 ) ) ) <_ ( B + ( 1 / 2 ) ) ) ) |
| 10 |
6 9
|
mpbird |
|- ( B e. RR -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) <_ B ) |
| 11 |
8 3
|
jca |
|- ( B e. RR -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) ) |
| 12 |
|
resubcl |
|- ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. RR ) |
| 13 |
11 12
|
syl |
|- ( B e. RR -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. RR ) |
| 14 |
1 13
|
subge0d |
|- ( B e. RR -> ( 0 <_ ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) <-> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) <_ B ) ) |
| 15 |
10 14
|
mpbird |
|- ( B e. RR -> 0 <_ ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |