Metamath Proof Explorer


Theorem dnibndlem1

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem1.1 T = x x + 1 2 x
dnibndlem1.2 φ A
dnibndlem1.3 φ B
Assertion dnibndlem1 φ T B T A S B + 1 2 B A + 1 2 A S

Proof

Step Hyp Ref Expression
1 dnibndlem1.1 T = x x + 1 2 x
2 dnibndlem1.2 φ A
3 dnibndlem1.3 φ B
4 1 dnival B T B = B + 1 2 B
5 3 4 syl φ T B = B + 1 2 B
6 1 dnival A T A = A + 1 2 A
7 2 6 syl φ T A = A + 1 2 A
8 5 7 oveq12d φ T B T A = B + 1 2 B A + 1 2 A
9 8 fveq2d φ T B T A = B + 1 2 B A + 1 2 A
10 9 breq1d φ T B T A S B + 1 2 B A + 1 2 A S