Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem6.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
dnibndlem6.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
2
|
dnicld1 |
⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ∈ ℝ ) |
4 |
3
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ∈ ℂ ) |
5 |
1
|
dnicld1 |
⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) |
6 |
5
|
recnd |
⊢ ( 𝜑 → ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℂ ) |
7 |
4 6
|
subcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ∈ ℂ ) |
8 |
7
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ∈ ℝ ) |
9 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
11 |
4 10
|
subcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ∈ ℂ ) |
12 |
11
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) ∈ ℝ ) |
13 |
10 6
|
subcld |
⊢ ( 𝜑 → ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ∈ ℂ ) |
14 |
13
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ∈ ℝ ) |
15 |
12 14
|
readdcld |
⊢ ( 𝜑 → ( ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) + ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) ∈ ℝ ) |
16 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
18 |
17 3
|
jca |
⊢ ( 𝜑 → ( ( 1 / 2 ) ∈ ℝ ∧ ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ∈ ℝ ) ) |
19 |
|
resubcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ∈ ℝ ) → ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ∈ ℝ ) |
21 |
17 5
|
jca |
⊢ ( 𝜑 → ( ( 1 / 2 ) ∈ ℝ ∧ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) ) |
22 |
|
resubcl |
⊢ ( ( ( 1 / 2 ) ∈ ℝ ∧ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℝ ) → ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ∈ ℝ ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ∈ ℝ ) |
24 |
20 23
|
readdcld |
⊢ ( 𝜑 → ( ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) + ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ∈ ℝ ) |
25 |
4 6 10
|
3jca |
⊢ ( 𝜑 → ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ∈ ℂ ∧ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) ) |
26 |
|
abs3dif |
⊢ ( ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ∈ ℂ ∧ ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ≤ ( ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) + ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) ) |
27 |
25 26
|
syl |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ≤ ( ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) + ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) ) |
28 |
4 10
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) = ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ) ) |
29 |
|
rddif2 |
⊢ ( 𝐵 ∈ ℝ → 0 ≤ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ) |
30 |
2 29
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ) |
31 |
20 30
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ) = ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ) |
32 |
28 31
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) = ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) ) |
33 |
|
rddif2 |
⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) |
34 |
1 33
|
syl |
⊢ ( 𝜑 → 0 ≤ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) |
35 |
23 34
|
absidd |
⊢ ( 𝜑 → ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) = ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) |
36 |
32 35
|
oveq12d |
⊢ ( 𝜑 → ( ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) + ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) = ( ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) + ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) |
37 |
15 36
|
eqled |
⊢ ( 𝜑 → ( ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( 1 / 2 ) ) ) + ( abs ‘ ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) ≤ ( ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) + ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) |
38 |
8 15 24 27 37
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ≤ ( ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − 𝐵 ) ) ) + ( ( 1 / 2 ) − ( abs ‘ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) − 𝐴 ) ) ) ) ) |