Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem6.1 |
|
2 |
|
dnibndlem6.2 |
|
3 |
2
|
dnicld1 |
|
4 |
3
|
recnd |
|
5 |
1
|
dnicld1 |
|
6 |
5
|
recnd |
|
7 |
4 6
|
subcld |
|
8 |
7
|
abscld |
|
9 |
|
halfcn |
|
10 |
9
|
a1i |
|
11 |
4 10
|
subcld |
|
12 |
11
|
abscld |
|
13 |
10 6
|
subcld |
|
14 |
13
|
abscld |
|
15 |
12 14
|
readdcld |
|
16 |
|
halfre |
|
17 |
16
|
a1i |
|
18 |
17 3
|
jca |
|
19 |
|
resubcl |
|
20 |
18 19
|
syl |
|
21 |
17 5
|
jca |
|
22 |
|
resubcl |
|
23 |
21 22
|
syl |
|
24 |
20 23
|
readdcld |
|
25 |
4 6 10
|
3jca |
|
26 |
|
abs3dif |
|
27 |
25 26
|
syl |
|
28 |
4 10
|
abssubd |
|
29 |
|
rddif2 |
|
30 |
2 29
|
syl |
|
31 |
20 30
|
absidd |
|
32 |
28 31
|
eqtrd |
|
33 |
|
rddif2 |
|
34 |
1 33
|
syl |
|
35 |
23 34
|
absidd |
|
36 |
32 35
|
oveq12d |
|
37 |
15 36
|
eqled |
|
38 |
8 15 24 27 37
|
letrd |
|