| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem6.1 |
|
| 2 |
|
dnibndlem6.2 |
|
| 3 |
2
|
dnicld1 |
|
| 4 |
3
|
recnd |
|
| 5 |
1
|
dnicld1 |
|
| 6 |
5
|
recnd |
|
| 7 |
4 6
|
subcld |
|
| 8 |
7
|
abscld |
|
| 9 |
|
halfcn |
|
| 10 |
9
|
a1i |
|
| 11 |
4 10
|
subcld |
|
| 12 |
11
|
abscld |
|
| 13 |
10 6
|
subcld |
|
| 14 |
13
|
abscld |
|
| 15 |
12 14
|
readdcld |
|
| 16 |
|
halfre |
|
| 17 |
16
|
a1i |
|
| 18 |
17 3
|
jca |
|
| 19 |
|
resubcl |
|
| 20 |
18 19
|
syl |
|
| 21 |
17 5
|
jca |
|
| 22 |
|
resubcl |
|
| 23 |
21 22
|
syl |
|
| 24 |
20 23
|
readdcld |
|
| 25 |
4 6 10
|
3jca |
|
| 26 |
|
abs3dif |
|
| 27 |
25 26
|
syl |
|
| 28 |
4 10
|
abssubd |
|
| 29 |
|
rddif2 |
|
| 30 |
2 29
|
syl |
|
| 31 |
20 30
|
absidd |
|
| 32 |
28 31
|
eqtrd |
|
| 33 |
|
rddif2 |
|
| 34 |
1 33
|
syl |
|
| 35 |
23 34
|
absidd |
|
| 36 |
32 35
|
oveq12d |
|
| 37 |
15 36
|
eqled |
|
| 38 |
8 15 24 27 37
|
letrd |
|