Step |
Hyp |
Ref |
Expression |
1 |
|
dnibnd.1 |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
2 |
|
dnibnd.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
3 |
|
dnibnd.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐴 ∈ ℝ ) |
5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐵 ∈ ℝ ) |
6 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
7 |
1 4 5 6
|
dnibndlem13 |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
8 |
1 3
|
dnicld2 |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝐵 ) ∈ ℝ ) |
9 |
8
|
recnd |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝐵 ) ∈ ℂ ) |
10 |
1 2
|
dnicld2 |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝐴 ) ∈ ℝ ) |
11 |
10
|
recnd |
⊢ ( 𝜑 → ( 𝑇 ‘ 𝐴 ) ∈ ℂ ) |
12 |
9 11
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → 𝐵 ∈ ℝ ) |
15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → 𝐴 ∈ ℝ ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) |
17 |
1 14 15 16
|
dnibndlem13 |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐴 − 𝐵 ) ) ) |
18 |
2
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
19 |
3
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
20 |
18 19
|
abssubd |
⊢ ( 𝜑 → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( 𝐴 − 𝐵 ) ) = ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
22 |
17 21
|
breqtrd |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐴 ) − ( 𝑇 ‘ 𝐵 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
23 |
13 22
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
24 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
26 |
2 25
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
27 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
28 |
26 27
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
29 |
3 25
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 1 / 2 ) ) ∈ ℝ ) |
30 |
|
reflcl |
⊢ ( ( 𝐵 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ) |
32 |
28 31
|
letrid |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) ) |
33 |
7 23 32
|
mpjaodan |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |