| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem13.1 |
⊢ 𝑇 = ( 𝑥 ∈ ℝ ↦ ( abs ‘ ( ( ⌊ ‘ ( 𝑥 + ( 1 / 2 ) ) ) − 𝑥 ) ) ) |
| 2 |
|
dnibndlem13.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
dnibndlem13.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 4 |
|
dnibndlem13.4 |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 5 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 6 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 8 |
1 5 6 7
|
dnibndlem12 |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 9 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 10 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 12 |
11
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 13 |
1 9 10 12
|
dnibndlem9 |
⊢ ( ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 15 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 16 |
15
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 17 |
2 16
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 18 |
17
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ ) |
| 19 |
3 16
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 1 / 2 ) ) ∈ ℝ ) |
| 20 |
19
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℤ ) |
| 21 |
18 20
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℤ ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℤ ) ) |
| 23 |
|
zltp1le |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 25 |
14 24
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 26 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 27 |
17 26
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 28 |
|
peano2re |
⊢ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ∈ ℝ ) |
| 29 |
27 28
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ∈ ℝ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ∈ ℝ ) |
| 31 |
20
|
zred |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 33 |
30 32
|
leloed |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) ) |
| 34 |
25 33
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 35 |
18
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ∈ ℤ ) |
| 36 |
35 20
|
jca |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℤ ) ) |
| 37 |
|
zltp1le |
⊢ ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ∈ ℤ ∧ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℤ ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 39 |
27
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ) |
| 40 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 41 |
39 40 40
|
addassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) + 1 ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 + 1 ) ) ) |
| 42 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
| 43 |
42
|
a1i |
⊢ ( 𝜑 → ( 1 + 1 ) = 2 ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 + 1 ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ) |
| 45 |
41 44
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) + 1 ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ) |
| 46 |
45
|
breq1d |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) + 1 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 47 |
38 46
|
bitrd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 48 |
47
|
biimpd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 50 |
49
|
orim1d |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) ) |
| 51 |
34 50
|
mpd |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 52 |
8 13 51
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 53 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐴 ∈ ℝ ) |
| 54 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → 𝐵 ∈ ℝ ) |
| 55 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 56 |
55
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ) |
| 57 |
1 53 54 56
|
dnibndlem2 |
⊢ ( ( 𝜑 ∧ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |
| 58 |
27 31
|
leloed |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) ) |
| 59 |
4 58
|
mpbid |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) < ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∨ ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) = ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) ) |
| 60 |
52 57 59
|
mpjaodan |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝐵 ) − ( 𝑇 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝐵 − 𝐴 ) ) ) |