| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem13.1 |
|
| 2 |
|
dnibndlem13.2 |
|
| 3 |
|
dnibndlem13.3 |
|
| 4 |
|
dnibndlem13.4 |
|
| 5 |
2
|
ad2antrr |
|
| 6 |
3
|
ad2antrr |
|
| 7 |
|
simpr |
|
| 8 |
1 5 6 7
|
dnibndlem12 |
|
| 9 |
2
|
ad2antrr |
|
| 10 |
3
|
ad2antrr |
|
| 11 |
|
simpr |
|
| 12 |
11
|
eqcomd |
|
| 13 |
1 9 10 12
|
dnibndlem9 |
|
| 14 |
|
simpr |
|
| 15 |
|
halfre |
|
| 16 |
15
|
a1i |
|
| 17 |
2 16
|
readdcld |
|
| 18 |
17
|
flcld |
|
| 19 |
3 16
|
readdcld |
|
| 20 |
19
|
flcld |
|
| 21 |
18 20
|
jca |
|
| 22 |
21
|
adantr |
|
| 23 |
|
zltp1le |
|
| 24 |
22 23
|
syl |
|
| 25 |
14 24
|
mpbid |
|
| 26 |
|
reflcl |
|
| 27 |
17 26
|
syl |
|
| 28 |
|
peano2re |
|
| 29 |
27 28
|
syl |
|
| 30 |
29
|
adantr |
|
| 31 |
20
|
zred |
|
| 32 |
31
|
adantr |
|
| 33 |
30 32
|
leloed |
|
| 34 |
25 33
|
mpbid |
|
| 35 |
18
|
peano2zd |
|
| 36 |
35 20
|
jca |
|
| 37 |
|
zltp1le |
|
| 38 |
36 37
|
syl |
|
| 39 |
27
|
recnd |
|
| 40 |
|
1cnd |
|
| 41 |
39 40 40
|
addassd |
|
| 42 |
|
1p1e2 |
|
| 43 |
42
|
a1i |
|
| 44 |
43
|
oveq2d |
|
| 45 |
41 44
|
eqtrd |
|
| 46 |
45
|
breq1d |
|
| 47 |
38 46
|
bitrd |
|
| 48 |
47
|
biimpd |
|
| 49 |
48
|
adantr |
|
| 50 |
49
|
orim1d |
|
| 51 |
34 50
|
mpd |
|
| 52 |
8 13 51
|
mpjaodan |
|
| 53 |
2
|
adantr |
|
| 54 |
3
|
adantr |
|
| 55 |
|
simpr |
|
| 56 |
55
|
eqcomd |
|
| 57 |
1 53 54 56
|
dnibndlem2 |
|
| 58 |
27 31
|
leloed |
|
| 59 |
4 58
|
mpbid |
|
| 60 |
52 57 59
|
mpjaodan |
|