Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem13.1 |
|
2 |
|
dnibndlem13.2 |
|
3 |
|
dnibndlem13.3 |
|
4 |
|
dnibndlem13.4 |
|
5 |
2
|
ad2antrr |
|
6 |
3
|
ad2antrr |
|
7 |
|
simpr |
|
8 |
1 5 6 7
|
dnibndlem12 |
|
9 |
2
|
ad2antrr |
|
10 |
3
|
ad2antrr |
|
11 |
|
simpr |
|
12 |
11
|
eqcomd |
|
13 |
1 9 10 12
|
dnibndlem9 |
|
14 |
|
simpr |
|
15 |
|
halfre |
|
16 |
15
|
a1i |
|
17 |
2 16
|
readdcld |
|
18 |
17
|
flcld |
|
19 |
3 16
|
readdcld |
|
20 |
19
|
flcld |
|
21 |
18 20
|
jca |
|
22 |
21
|
adantr |
|
23 |
|
zltp1le |
|
24 |
22 23
|
syl |
|
25 |
14 24
|
mpbid |
|
26 |
|
reflcl |
|
27 |
17 26
|
syl |
|
28 |
|
peano2re |
|
29 |
27 28
|
syl |
|
30 |
29
|
adantr |
|
31 |
20
|
zred |
|
32 |
31
|
adantr |
|
33 |
30 32
|
leloed |
|
34 |
25 33
|
mpbid |
|
35 |
18
|
peano2zd |
|
36 |
35 20
|
jca |
|
37 |
|
zltp1le |
|
38 |
36 37
|
syl |
|
39 |
27
|
recnd |
|
40 |
|
1cnd |
|
41 |
39 40 40
|
addassd |
|
42 |
|
1p1e2 |
|
43 |
42
|
a1i |
|
44 |
43
|
oveq2d |
|
45 |
41 44
|
eqtrd |
|
46 |
45
|
breq1d |
|
47 |
38 46
|
bitrd |
|
48 |
47
|
biimpd |
|
49 |
48
|
adantr |
|
50 |
49
|
orim1d |
|
51 |
34 50
|
mpd |
|
52 |
8 13 51
|
mpjaodan |
|
53 |
2
|
adantr |
|
54 |
3
|
adantr |
|
55 |
|
simpr |
|
56 |
55
|
eqcomd |
|
57 |
1 53 54 56
|
dnibndlem2 |
|
58 |
27 31
|
leloed |
|
59 |
4 58
|
mpbid |
|
60 |
52 57 59
|
mpjaodan |
|