Metamath Proof Explorer


Theorem dnibndlem13

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem13.1 T = x x + 1 2 x
dnibndlem13.2 φ A
dnibndlem13.3 φ B
dnibndlem13.4 φ A + 1 2 B + 1 2
Assertion dnibndlem13 φ T B T A B A

Proof

Step Hyp Ref Expression
1 dnibndlem13.1 T = x x + 1 2 x
2 dnibndlem13.2 φ A
3 dnibndlem13.3 φ B
4 dnibndlem13.4 φ A + 1 2 B + 1 2
5 2 ad2antrr φ A + 1 2 < B + 1 2 A + 1 2 + 2 B + 1 2 A
6 3 ad2antrr φ A + 1 2 < B + 1 2 A + 1 2 + 2 B + 1 2 B
7 simpr φ A + 1 2 < B + 1 2 A + 1 2 + 2 B + 1 2 A + 1 2 + 2 B + 1 2
8 1 5 6 7 dnibndlem12 φ A + 1 2 < B + 1 2 A + 1 2 + 2 B + 1 2 T B T A B A
9 2 ad2antrr φ A + 1 2 < B + 1 2 A + 1 2 + 1 = B + 1 2 A
10 3 ad2antrr φ A + 1 2 < B + 1 2 A + 1 2 + 1 = B + 1 2 B
11 simpr φ A + 1 2 < B + 1 2 A + 1 2 + 1 = B + 1 2 A + 1 2 + 1 = B + 1 2
12 11 eqcomd φ A + 1 2 < B + 1 2 A + 1 2 + 1 = B + 1 2 B + 1 2 = A + 1 2 + 1
13 1 9 10 12 dnibndlem9 φ A + 1 2 < B + 1 2 A + 1 2 + 1 = B + 1 2 T B T A B A
14 simpr φ A + 1 2 < B + 1 2 A + 1 2 < B + 1 2
15 halfre 1 2
16 15 a1i φ 1 2
17 2 16 readdcld φ A + 1 2
18 17 flcld φ A + 1 2
19 3 16 readdcld φ B + 1 2
20 19 flcld φ B + 1 2
21 18 20 jca φ A + 1 2 B + 1 2
22 21 adantr φ A + 1 2 < B + 1 2 A + 1 2 B + 1 2
23 zltp1le A + 1 2 B + 1 2 A + 1 2 < B + 1 2 A + 1 2 + 1 B + 1 2
24 22 23 syl φ A + 1 2 < B + 1 2 A + 1 2 < B + 1 2 A + 1 2 + 1 B + 1 2
25 14 24 mpbid φ A + 1 2 < B + 1 2 A + 1 2 + 1 B + 1 2
26 reflcl A + 1 2 A + 1 2
27 17 26 syl φ A + 1 2
28 peano2re A + 1 2 A + 1 2 + 1
29 27 28 syl φ A + 1 2 + 1
30 29 adantr φ A + 1 2 < B + 1 2 A + 1 2 + 1
31 20 zred φ B + 1 2
32 31 adantr φ A + 1 2 < B + 1 2 B + 1 2
33 30 32 leloed φ A + 1 2 < B + 1 2 A + 1 2 + 1 B + 1 2 A + 1 2 + 1 < B + 1 2 A + 1 2 + 1 = B + 1 2
34 25 33 mpbid φ A + 1 2 < B + 1 2 A + 1 2 + 1 < B + 1 2 A + 1 2 + 1 = B + 1 2
35 18 peano2zd φ A + 1 2 + 1
36 35 20 jca φ A + 1 2 + 1 B + 1 2
37 zltp1le A + 1 2 + 1 B + 1 2 A + 1 2 + 1 < B + 1 2 A + 1 2 + 1 + 1 B + 1 2
38 36 37 syl φ A + 1 2 + 1 < B + 1 2 A + 1 2 + 1 + 1 B + 1 2
39 27 recnd φ A + 1 2
40 1cnd φ 1
41 39 40 40 addassd φ A + 1 2 + 1 + 1 = A + 1 2 + 1 + 1
42 1p1e2 1 + 1 = 2
43 42 a1i φ 1 + 1 = 2
44 43 oveq2d φ A + 1 2 + 1 + 1 = A + 1 2 + 2
45 41 44 eqtrd φ A + 1 2 + 1 + 1 = A + 1 2 + 2
46 45 breq1d φ A + 1 2 + 1 + 1 B + 1 2 A + 1 2 + 2 B + 1 2
47 38 46 bitrd φ A + 1 2 + 1 < B + 1 2 A + 1 2 + 2 B + 1 2
48 47 biimpd φ A + 1 2 + 1 < B + 1 2 A + 1 2 + 2 B + 1 2
49 48 adantr φ A + 1 2 < B + 1 2 A + 1 2 + 1 < B + 1 2 A + 1 2 + 2 B + 1 2
50 49 orim1d φ A + 1 2 < B + 1 2 A + 1 2 + 1 < B + 1 2 A + 1 2 + 1 = B + 1 2 A + 1 2 + 2 B + 1 2 A + 1 2 + 1 = B + 1 2
51 34 50 mpd φ A + 1 2 < B + 1 2 A + 1 2 + 2 B + 1 2 A + 1 2 + 1 = B + 1 2
52 8 13 51 mpjaodan φ A + 1 2 < B + 1 2 T B T A B A
53 2 adantr φ A + 1 2 = B + 1 2 A
54 3 adantr φ A + 1 2 = B + 1 2 B
55 simpr φ A + 1 2 = B + 1 2 A + 1 2 = B + 1 2
56 55 eqcomd φ A + 1 2 = B + 1 2 B + 1 2 = A + 1 2
57 1 53 54 56 dnibndlem2 φ A + 1 2 = B + 1 2 T B T A B A
58 27 31 leloed φ A + 1 2 B + 1 2 A + 1 2 < B + 1 2 A + 1 2 = B + 1 2
59 4 58 mpbid φ A + 1 2 < B + 1 2 A + 1 2 = B + 1 2
60 52 57 59 mpjaodan φ T B T A B A