Metamath Proof Explorer


Theorem dnibndlem12

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem12.1 T=xx+12x
dnibndlem12.2 φA
dnibndlem12.3 φB
dnibndlem12.4 φA+12+2B+12
Assertion dnibndlem12 φTBTABA

Proof

Step Hyp Ref Expression
1 dnibndlem12.1 T=xx+12x
2 dnibndlem12.2 φA
3 dnibndlem12.3 φB
4 dnibndlem12.4 φA+12+2B+12
5 3 dnicld1 φB+12B
6 2 dnicld1 φA+12A
7 5 6 resubcld φB+12BA+12A
8 7 recnd φB+12BA+12A
9 8 abscld φB+12BA+12A
10 1red φ1
11 3 2 resubcld φBA
12 11 recnd φBA
13 12 abscld φBA
14 10 rehalfcld φ12
15 2 3 dnibndlem11 φB+12BA+12A12
16 halflt1 12<1
17 halfre 12
18 1re 1
19 17 18 pm3.2i 121
20 ltle 12112<1121
21 19 20 ax-mp 12<1121
22 16 21 ax-mp 121
23 22 a1i φ121
24 9 14 10 15 23 letrd φB+12BA+12A1
25 2 3 4 dnibndlem10 φ1BA
26 11 leabsd φBABA
27 10 11 13 25 26 letrd φ1BA
28 9 10 13 24 27 letrd φB+12BA+12ABA
29 1 2 3 dnibndlem1 φTBTABAB+12BA+12ABA
30 28 29 mpbird φTBTABA