Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem12.1 |
|- T = ( x e. RR |-> ( abs ` ( ( |_ ` ( x + ( 1 / 2 ) ) ) - x ) ) ) |
2 |
|
dnibndlem12.2 |
|- ( ph -> A e. RR ) |
3 |
|
dnibndlem12.3 |
|- ( ph -> B e. RR ) |
4 |
|
dnibndlem12.4 |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) <_ ( |_ ` ( B + ( 1 / 2 ) ) ) ) |
5 |
3
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) |
6 |
2
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) e. RR ) |
7 |
5 6
|
resubcld |
|- ( ph -> ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. RR ) |
8 |
7
|
recnd |
|- ( ph -> ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) e. CC ) |
9 |
8
|
abscld |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) e. RR ) |
10 |
|
1red |
|- ( ph -> 1 e. RR ) |
11 |
3 2
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
12 |
11
|
recnd |
|- ( ph -> ( B - A ) e. CC ) |
13 |
12
|
abscld |
|- ( ph -> ( abs ` ( B - A ) ) e. RR ) |
14 |
10
|
rehalfcld |
|- ( ph -> ( 1 / 2 ) e. RR ) |
15 |
2 3
|
dnibndlem11 |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( 1 / 2 ) ) |
16 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
17 |
|
halfre |
|- ( 1 / 2 ) e. RR |
18 |
|
1re |
|- 1 e. RR |
19 |
17 18
|
pm3.2i |
|- ( ( 1 / 2 ) e. RR /\ 1 e. RR ) |
20 |
|
ltle |
|- ( ( ( 1 / 2 ) e. RR /\ 1 e. RR ) -> ( ( 1 / 2 ) < 1 -> ( 1 / 2 ) <_ 1 ) ) |
21 |
19 20
|
ax-mp |
|- ( ( 1 / 2 ) < 1 -> ( 1 / 2 ) <_ 1 ) |
22 |
16 21
|
ax-mp |
|- ( 1 / 2 ) <_ 1 |
23 |
22
|
a1i |
|- ( ph -> ( 1 / 2 ) <_ 1 ) |
24 |
9 14 10 15 23
|
letrd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ 1 ) |
25 |
2 3 4
|
dnibndlem10 |
|- ( ph -> 1 <_ ( B - A ) ) |
26 |
11
|
leabsd |
|- ( ph -> ( B - A ) <_ ( abs ` ( B - A ) ) ) |
27 |
10 11 13 25 26
|
letrd |
|- ( ph -> 1 <_ ( abs ` ( B - A ) ) ) |
28 |
9 10 13 24 27
|
letrd |
|- ( ph -> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( abs ` ( B - A ) ) ) |
29 |
1 2 3
|
dnibndlem1 |
|- ( ph -> ( ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ ( abs ` ( B - A ) ) <-> ( abs ` ( ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) - ( abs ` ( ( |_ ` ( A + ( 1 / 2 ) ) ) - A ) ) ) ) <_ ( abs ` ( B - A ) ) ) ) |
30 |
28 29
|
mpbird |
|- ( ph -> ( abs ` ( ( T ` B ) - ( T ` A ) ) ) <_ ( abs ` ( B - A ) ) ) |