Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem10.1 |
|- ( ph -> A e. RR ) |
2 |
|
dnibndlem10.2 |
|- ( ph -> B e. RR ) |
3 |
|
dnibndlem10.3 |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) <_ ( |_ ` ( B + ( 1 / 2 ) ) ) ) |
4 |
|
1red |
|- ( ph -> 1 e. RR ) |
5 |
|
halfre |
|- ( 1 / 2 ) e. RR |
6 |
5
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
7 |
2 6
|
readdcld |
|- ( ph -> ( B + ( 1 / 2 ) ) e. RR ) |
8 |
|
reflcl |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
10 |
9 6
|
jca |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) ) |
11 |
|
resubcl |
|- ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. RR ) |
12 |
10 11
|
syl |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. RR ) |
13 |
1 6
|
readdcld |
|- ( ph -> ( A + ( 1 / 2 ) ) e. RR ) |
14 |
|
reflcl |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
15 |
13 14
|
syl |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. RR ) |
16 |
15 6
|
readdcld |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) |
17 |
12 16
|
jca |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. RR /\ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) ) |
18 |
|
resubcl |
|- ( ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) e. RR /\ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) e. RR ) -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) e. RR ) |
19 |
17 18
|
syl |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) e. RR ) |
20 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
21 |
15
|
recnd |
|- ( ph -> ( |_ ` ( A + ( 1 / 2 ) ) ) e. CC ) |
22 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
23 |
6
|
recnd |
|- ( ph -> ( 1 / 2 ) e. CC ) |
24 |
21 22 23
|
addsubassd |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 2 - ( 1 / 2 ) ) ) ) |
25 |
24
|
oveq1d |
|- ( ph -> ( ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 2 - ( 1 / 2 ) ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
26 |
22 23
|
subcld |
|- ( ph -> ( 2 - ( 1 / 2 ) ) e. CC ) |
27 |
21 26 23
|
pnpcand |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 2 - ( 1 / 2 ) ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) = ( ( 2 - ( 1 / 2 ) ) - ( 1 / 2 ) ) ) |
28 |
22 23 23
|
subsub4d |
|- ( ph -> ( ( 2 - ( 1 / 2 ) ) - ( 1 / 2 ) ) = ( 2 - ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
29 |
|
ax-1cn |
|- 1 e. CC |
30 |
|
2halves |
|- ( 1 e. CC -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
31 |
29 30
|
ax-mp |
|- ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
32 |
31
|
a1i |
|- ( ph -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
33 |
32
|
oveq2d |
|- ( ph -> ( 2 - ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 2 - 1 ) ) |
34 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
35 |
34
|
a1i |
|- ( ph -> ( 2 - 1 ) = 1 ) |
36 |
28 33 35
|
3eqtrd |
|- ( ph -> ( ( 2 - ( 1 / 2 ) ) - ( 1 / 2 ) ) = 1 ) |
37 |
25 27 36
|
3eqtrd |
|- ( ph -> ( ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) = 1 ) |
38 |
37
|
eqcomd |
|- ( ph -> 1 = ( ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
39 |
|
2re |
|- 2 e. RR |
40 |
39
|
a1i |
|- ( ph -> 2 e. RR ) |
41 |
15 40
|
readdcld |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) e. RR ) |
42 |
41 6
|
jca |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) e. RR /\ ( 1 / 2 ) e. RR ) ) |
43 |
|
resubcl |
|- ( ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) e. RR /\ ( 1 / 2 ) e. RR ) -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) e. RR ) |
44 |
42 43
|
syl |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) e. RR ) |
45 |
41 9 6 3
|
lesub1dd |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) <_ ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) |
46 |
44 12 16 45
|
lesub1dd |
|- ( ph -> ( ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 2 ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) <_ ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
47 |
38 46
|
eqbrtrd |
|- ( ph -> 1 <_ ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
48 |
|
flle |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) <_ ( B + ( 1 / 2 ) ) ) |
49 |
7 48
|
syl |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) <_ ( B + ( 1 / 2 ) ) ) |
50 |
9 6 2
|
lesubaddd |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) <_ B <-> ( |_ ` ( B + ( 1 / 2 ) ) ) <_ ( B + ( 1 / 2 ) ) ) ) |
51 |
49 50
|
mpbird |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) <_ B ) |
52 |
|
fllep1 |
|- ( ( A + ( 1 / 2 ) ) e. RR -> ( A + ( 1 / 2 ) ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
53 |
13 52
|
syl |
|- ( ph -> ( A + ( 1 / 2 ) ) <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
54 |
21 23 23
|
addassd |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
55 |
32
|
oveq2d |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
56 |
54 55
|
eqtrd |
|- ( ph -> ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) ) |
57 |
56
|
eqcomd |
|- ( ph -> ( ( |_ ` ( A + ( 1 / 2 ) ) ) + 1 ) = ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
58 |
53 57
|
breqtrd |
|- ( ph -> ( A + ( 1 / 2 ) ) <_ ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
59 |
1 16 6
|
leadd1d |
|- ( ph -> ( A <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) <-> ( A + ( 1 / 2 ) ) <_ ( ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) ) |
60 |
58 59
|
mpbird |
|- ( ph -> A <_ ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
61 |
12 1 2 16 51 60
|
le2subd |
|- ( ph -> ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) - ( ( |_ ` ( A + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) <_ ( B - A ) ) |
62 |
4 19 20 47 61
|
letrd |
|- ( ph -> 1 <_ ( B - A ) ) |