Metamath Proof Explorer


Theorem dnibndlem10

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem10.1 φ A
dnibndlem10.2 φ B
dnibndlem10.3 φ A + 1 2 + 2 B + 1 2
Assertion dnibndlem10 φ 1 B A

Proof

Step Hyp Ref Expression
1 dnibndlem10.1 φ A
2 dnibndlem10.2 φ B
3 dnibndlem10.3 φ A + 1 2 + 2 B + 1 2
4 1red φ 1
5 halfre 1 2
6 5 a1i φ 1 2
7 2 6 readdcld φ B + 1 2
8 reflcl B + 1 2 B + 1 2
9 7 8 syl φ B + 1 2
10 9 6 jca φ B + 1 2 1 2
11 resubcl B + 1 2 1 2 B + 1 2 1 2
12 10 11 syl φ B + 1 2 1 2
13 1 6 readdcld φ A + 1 2
14 reflcl A + 1 2 A + 1 2
15 13 14 syl φ A + 1 2
16 15 6 readdcld φ A + 1 2 + 1 2
17 12 16 jca φ B + 1 2 1 2 A + 1 2 + 1 2
18 resubcl B + 1 2 1 2 A + 1 2 + 1 2 B + 1 2 - 1 2 - A + 1 2 + 1 2
19 17 18 syl φ B + 1 2 - 1 2 - A + 1 2 + 1 2
20 2 1 resubcld φ B A
21 15 recnd φ A + 1 2
22 2cnd φ 2
23 6 recnd φ 1 2
24 21 22 23 addsubassd φ A + 1 2 + 2 - 1 2 = A + 1 2 + 2 - 1 2
25 24 oveq1d φ A + 1 2 + 2 - 1 2 - A + 1 2 + 1 2 = A + 1 2 + 2 1 2 - A + 1 2 + 1 2
26 22 23 subcld φ 2 1 2
27 21 26 23 pnpcand φ A + 1 2 + 2 1 2 - A + 1 2 + 1 2 = 2 - 1 2 - 1 2
28 22 23 23 subsub4d φ 2 - 1 2 - 1 2 = 2 1 2 + 1 2
29 ax-1cn 1
30 2halves 1 1 2 + 1 2 = 1
31 29 30 ax-mp 1 2 + 1 2 = 1
32 31 a1i φ 1 2 + 1 2 = 1
33 32 oveq2d φ 2 1 2 + 1 2 = 2 1
34 2m1e1 2 1 = 1
35 34 a1i φ 2 1 = 1
36 28 33 35 3eqtrd φ 2 - 1 2 - 1 2 = 1
37 25 27 36 3eqtrd φ A + 1 2 + 2 - 1 2 - A + 1 2 + 1 2 = 1
38 37 eqcomd φ 1 = A + 1 2 + 2 - 1 2 - A + 1 2 + 1 2
39 2re 2
40 39 a1i φ 2
41 15 40 readdcld φ A + 1 2 + 2
42 41 6 jca φ A + 1 2 + 2 1 2
43 resubcl A + 1 2 + 2 1 2 A + 1 2 + 2 - 1 2
44 42 43 syl φ A + 1 2 + 2 - 1 2
45 41 9 6 3 lesub1dd φ A + 1 2 + 2 - 1 2 B + 1 2 1 2
46 44 12 16 45 lesub1dd φ A + 1 2 + 2 - 1 2 - A + 1 2 + 1 2 B + 1 2 - 1 2 - A + 1 2 + 1 2
47 38 46 eqbrtrd φ 1 B + 1 2 - 1 2 - A + 1 2 + 1 2
48 flle B + 1 2 B + 1 2 B + 1 2
49 7 48 syl φ B + 1 2 B + 1 2
50 9 6 2 lesubaddd φ B + 1 2 1 2 B B + 1 2 B + 1 2
51 49 50 mpbird φ B + 1 2 1 2 B
52 fllep1 A + 1 2 A + 1 2 A + 1 2 + 1
53 13 52 syl φ A + 1 2 A + 1 2 + 1
54 21 23 23 addassd φ A + 1 2 + 1 2 + 1 2 = A + 1 2 + 1 2 + 1 2
55 32 oveq2d φ A + 1 2 + 1 2 + 1 2 = A + 1 2 + 1
56 54 55 eqtrd φ A + 1 2 + 1 2 + 1 2 = A + 1 2 + 1
57 56 eqcomd φ A + 1 2 + 1 = A + 1 2 + 1 2 + 1 2
58 53 57 breqtrd φ A + 1 2 A + 1 2 + 1 2 + 1 2
59 1 16 6 leadd1d φ A A + 1 2 + 1 2 A + 1 2 A + 1 2 + 1 2 + 1 2
60 58 59 mpbird φ A A + 1 2 + 1 2
61 12 1 2 16 51 60 le2subd φ B + 1 2 - 1 2 - A + 1 2 + 1 2 B A
62 4 19 20 47 61 letrd φ 1 B A