Metamath Proof Explorer


Theorem dnibndlem11

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem11.1 φ A
dnibndlem11.2 φ B
Assertion dnibndlem11 φ B + 1 2 B A + 1 2 A 1 2

Proof

Step Hyp Ref Expression
1 dnibndlem11.1 φ A
2 dnibndlem11.2 φ B
3 2 dnicld1 φ B + 1 2 B
4 1 dnicld1 φ A + 1 2 A
5 3 4 resubcld φ B + 1 2 B A + 1 2 A
6 halfre 1 2
7 6 a1i φ 1 2
8 3 recnd φ B + 1 2 B
9 4 recnd φ A + 1 2 A
10 8 9 negsubdi2d φ B + 1 2 B A + 1 2 A = A + 1 2 A B + 1 2 B
11 4 3 resubcld φ A + 1 2 A B + 1 2 B
12 2 7 readdcld φ B + 1 2
13 reflcl B + 1 2 B + 1 2
14 12 13 syl φ B + 1 2
15 14 recnd φ B + 1 2
16 2 recnd φ B
17 15 16 subcld φ B + 1 2 B
18 17 absge0d φ 0 B + 1 2 B
19 4 3 subge02d φ 0 B + 1 2 B A + 1 2 A B + 1 2 B A + 1 2 A
20 18 19 mpbid φ A + 1 2 A B + 1 2 B A + 1 2 A
21 rddif A A + 1 2 A 1 2
22 1 21 syl φ A + 1 2 A 1 2
23 11 4 7 20 22 letrd φ A + 1 2 A B + 1 2 B 1 2
24 10 23 eqbrtrd φ B + 1 2 B A + 1 2 A 1 2
25 5 7 24 lenegcon1d φ 1 2 B + 1 2 B A + 1 2 A
26 1 7 readdcld φ A + 1 2
27 reflcl A + 1 2 A + 1 2
28 26 27 syl φ A + 1 2
29 28 recnd φ A + 1 2
30 1 recnd φ A
31 29 30 subcld φ A + 1 2 A
32 31 absge0d φ 0 A + 1 2 A
33 3 4 subge02d φ 0 A + 1 2 A B + 1 2 B A + 1 2 A B + 1 2 B
34 32 33 mpbid φ B + 1 2 B A + 1 2 A B + 1 2 B
35 rddif B B + 1 2 B 1 2
36 2 35 syl φ B + 1 2 B 1 2
37 5 3 7 34 36 letrd φ B + 1 2 B A + 1 2 A 1 2
38 25 37 jca φ 1 2 B + 1 2 B A + 1 2 A B + 1 2 B A + 1 2 A 1 2
39 5 7 absled φ B + 1 2 B A + 1 2 A 1 2 1 2 B + 1 2 B A + 1 2 A B + 1 2 B A + 1 2 A 1 2
40 38 39 mpbird φ B + 1 2 B A + 1 2 A 1 2