Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dnibndlem11.1 | |
|
dnibndlem11.2 | |
||
Assertion | dnibndlem11 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dnibndlem11.1 | |
|
2 | dnibndlem11.2 | |
|
3 | 2 | dnicld1 | |
4 | 1 | dnicld1 | |
5 | 3 4 | resubcld | |
6 | halfre | |
|
7 | 6 | a1i | |
8 | 3 | recnd | |
9 | 4 | recnd | |
10 | 8 9 | negsubdi2d | |
11 | 4 3 | resubcld | |
12 | 2 7 | readdcld | |
13 | reflcl | |
|
14 | 12 13 | syl | |
15 | 14 | recnd | |
16 | 2 | recnd | |
17 | 15 16 | subcld | |
18 | 17 | absge0d | |
19 | 4 3 | subge02d | |
20 | 18 19 | mpbid | |
21 | rddif | |
|
22 | 1 21 | syl | |
23 | 11 4 7 20 22 | letrd | |
24 | 10 23 | eqbrtrd | |
25 | 5 7 24 | lenegcon1d | |
26 | 1 7 | readdcld | |
27 | reflcl | |
|
28 | 26 27 | syl | |
29 | 28 | recnd | |
30 | 1 | recnd | |
31 | 29 30 | subcld | |
32 | 31 | absge0d | |
33 | 3 4 | subge02d | |
34 | 32 33 | mpbid | |
35 | rddif | |
|
36 | 2 35 | syl | |
37 | 5 3 7 34 36 | letrd | |
38 | 25 37 | jca | |
39 | 5 7 | absled | |
40 | 38 39 | mpbird | |