Metamath Proof Explorer


Theorem dnibndlem11

Description: Lemma for dnibnd . (Contributed by Asger C. Ipsen, 4-Apr-2021)

Ref Expression
Hypotheses dnibndlem11.1 φA
dnibndlem11.2 φB
Assertion dnibndlem11 φB+12BA+12A12

Proof

Step Hyp Ref Expression
1 dnibndlem11.1 φA
2 dnibndlem11.2 φB
3 2 dnicld1 φB+12B
4 1 dnicld1 φA+12A
5 3 4 resubcld φB+12BA+12A
6 halfre 12
7 6 a1i φ12
8 3 recnd φB+12B
9 4 recnd φA+12A
10 8 9 negsubdi2d φB+12BA+12A=A+12AB+12B
11 4 3 resubcld φA+12AB+12B
12 2 7 readdcld φB+12
13 reflcl B+12B+12
14 12 13 syl φB+12
15 14 recnd φB+12
16 2 recnd φB
17 15 16 subcld φB+12B
18 17 absge0d φ0B+12B
19 4 3 subge02d φ0B+12BA+12AB+12BA+12A
20 18 19 mpbid φA+12AB+12BA+12A
21 rddif AA+12A12
22 1 21 syl φA+12A12
23 11 4 7 20 22 letrd φA+12AB+12B12
24 10 23 eqbrtrd φB+12BA+12A12
25 5 7 24 lenegcon1d φ12B+12BA+12A
26 1 7 readdcld φA+12
27 reflcl A+12A+12
28 26 27 syl φA+12
29 28 recnd φA+12
30 1 recnd φA
31 29 30 subcld φA+12A
32 31 absge0d φ0A+12A
33 3 4 subge02d φ0A+12AB+12BA+12AB+12B
34 32 33 mpbid φB+12BA+12AB+12B
35 rddif BB+12B12
36 2 35 syl φB+12B12
37 5 3 7 34 36 letrd φB+12BA+12A12
38 25 37 jca φ12B+12BA+12AB+12BA+12A12
39 5 7 absled φB+12BA+12A1212B+12BA+12AB+12BA+12A12
40 38 39 mpbird φB+12BA+12A12