| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem10.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
dnibndlem10.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
dnibndlem10.3 |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ≤ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 4 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 5 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℝ ) |
| 7 |
2 6
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + ( 1 / 2 ) ) ∈ ℝ ) |
| 8 |
|
reflcl |
⊢ ( ( 𝐵 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 10 |
9 6
|
jca |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) ) |
| 11 |
|
resubcl |
⊢ ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ∈ ℝ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ∈ ℝ ) |
| 13 |
1 6
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
| 14 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 16 |
15 6
|
readdcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ∈ ℝ ) |
| 17 |
12 16
|
jca |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ∈ ℝ ) ) |
| 18 |
|
resubcl |
⊢ ( ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ∈ ℝ ∧ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ∈ ℝ ) → ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ∈ ℝ ) |
| 20 |
2 1
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 21 |
15
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ) |
| 22 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 23 |
6
|
recnd |
⊢ ( 𝜑 → ( 1 / 2 ) ∈ ℂ ) |
| 24 |
21 22 23
|
addsubassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 2 − ( 1 / 2 ) ) ) ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) = ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 2 − ( 1 / 2 ) ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
| 26 |
22 23
|
subcld |
⊢ ( 𝜑 → ( 2 − ( 1 / 2 ) ) ∈ ℂ ) |
| 27 |
21 26 23
|
pnpcand |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 2 − ( 1 / 2 ) ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) = ( ( 2 − ( 1 / 2 ) ) − ( 1 / 2 ) ) ) |
| 28 |
22 23 23
|
subsub4d |
⊢ ( 𝜑 → ( ( 2 − ( 1 / 2 ) ) − ( 1 / 2 ) ) = ( 2 − ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 29 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 30 |
|
2halves |
⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 31 |
29 30
|
ax-mp |
⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
| 32 |
31
|
a1i |
⊢ ( 𝜑 → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
| 33 |
32
|
oveq2d |
⊢ ( 𝜑 → ( 2 − ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( 2 − 1 ) ) |
| 34 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
| 35 |
34
|
a1i |
⊢ ( 𝜑 → ( 2 − 1 ) = 1 ) |
| 36 |
28 33 35
|
3eqtrd |
⊢ ( 𝜑 → ( ( 2 − ( 1 / 2 ) ) − ( 1 / 2 ) ) = 1 ) |
| 37 |
25 27 36
|
3eqtrd |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) = 1 ) |
| 38 |
37
|
eqcomd |
⊢ ( 𝜑 → 1 = ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
| 39 |
|
2re |
⊢ 2 ∈ ℝ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 41 |
15 40
|
readdcld |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ∈ ℝ ) |
| 42 |
41 6
|
jca |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) ) |
| 43 |
|
resubcl |
⊢ ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) ∈ ℝ ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) ∈ ℝ ) |
| 45 |
41 9 6 3
|
lesub1dd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ) |
| 46 |
44 12 16 45
|
lesub1dd |
⊢ ( 𝜑 → ( ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 2 ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ≤ ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
| 47 |
38 46
|
eqbrtrd |
⊢ ( 𝜑 → 1 ≤ ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ) |
| 48 |
|
flle |
⊢ ( ( 𝐵 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( 𝐵 + ( 1 / 2 ) ) ) |
| 49 |
7 48
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( 𝐵 + ( 1 / 2 ) ) ) |
| 50 |
9 6 2
|
lesubaddd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ≤ 𝐵 ↔ ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) ≤ ( 𝐵 + ( 1 / 2 ) ) ) ) |
| 51 |
49 50
|
mpbird |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) ≤ 𝐵 ) |
| 52 |
|
fllep1 |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 53 |
13 52
|
syl |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 54 |
21 23 23
|
addassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
| 55 |
32
|
oveq2d |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 56 |
54 55
|
eqtrd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
| 57 |
56
|
eqcomd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 58 |
53 57
|
breqtrd |
⊢ ( 𝜑 → ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 59 |
1 16 6
|
leadd1d |
⊢ ( 𝜑 → ( 𝐴 ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ↔ ( 𝐴 + ( 1 / 2 ) ) ≤ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) ) |
| 60 |
58 59
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
| 61 |
12 1 2 16 51 60
|
le2subd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐵 + ( 1 / 2 ) ) ) − ( 1 / 2 ) ) − ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| 62 |
4 19 20 47 61
|
letrd |
⊢ ( 𝜑 → 1 ≤ ( 𝐵 − 𝐴 ) ) |