Step |
Hyp |
Ref |
Expression |
1 |
|
dnibndlem7.1 |
|- ( ph -> B e. RR ) |
2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
3 |
2
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
4 |
1 3
|
jca |
|- ( ph -> ( B e. RR /\ ( 1 / 2 ) e. RR ) ) |
5 |
|
readdcl |
|- ( ( B e. RR /\ ( 1 / 2 ) e. RR ) -> ( B + ( 1 / 2 ) ) e. RR ) |
6 |
4 5
|
syl |
|- ( ph -> ( B + ( 1 / 2 ) ) e. RR ) |
7 |
|
reflcl |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
8 |
6 7
|
syl |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
9 |
8 1
|
jca |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ B e. RR ) ) |
10 |
|
resubcl |
|- ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ B e. RR ) -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) e. RR ) |
11 |
9 10
|
syl |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) e. RR ) |
12 |
1
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) |
13 |
11
|
leabsd |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) <_ ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
14 |
11 12 3 13
|
lesub2dd |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) <_ ( ( 1 / 2 ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
15 |
3
|
recnd |
|- ( ph -> ( 1 / 2 ) e. CC ) |
16 |
8
|
recnd |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. CC ) |
17 |
1
|
recnd |
|- ( ph -> B e. CC ) |
18 |
15 16 17
|
subsub3d |
|- ( ph -> ( ( 1 / 2 ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) = ( ( ( 1 / 2 ) + B ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) ) |
19 |
15 17
|
addcomd |
|- ( ph -> ( ( 1 / 2 ) + B ) = ( B + ( 1 / 2 ) ) ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) + B ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) = ( ( B + ( 1 / 2 ) ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) ) |
21 |
17 16 15
|
subsub3d |
|- ( ph -> ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) = ( ( B + ( 1 / 2 ) ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) ) |
22 |
21
|
eqcomd |
|- ( ph -> ( ( B + ( 1 / 2 ) ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) = ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |
23 |
18 20 22
|
3eqtrd |
|- ( ph -> ( ( 1 / 2 ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) = ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |
24 |
14 23
|
breqtrd |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) <_ ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |