| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dnibndlem7.1 |
|- ( ph -> B e. RR ) |
| 2 |
|
halfre |
|- ( 1 / 2 ) e. RR |
| 3 |
2
|
a1i |
|- ( ph -> ( 1 / 2 ) e. RR ) |
| 4 |
1 3
|
jca |
|- ( ph -> ( B e. RR /\ ( 1 / 2 ) e. RR ) ) |
| 5 |
|
readdcl |
|- ( ( B e. RR /\ ( 1 / 2 ) e. RR ) -> ( B + ( 1 / 2 ) ) e. RR ) |
| 6 |
4 5
|
syl |
|- ( ph -> ( B + ( 1 / 2 ) ) e. RR ) |
| 7 |
|
reflcl |
|- ( ( B + ( 1 / 2 ) ) e. RR -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR ) |
| 9 |
8 1
|
jca |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ B e. RR ) ) |
| 10 |
|
resubcl |
|- ( ( ( |_ ` ( B + ( 1 / 2 ) ) ) e. RR /\ B e. RR ) -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) e. RR ) |
| 11 |
9 10
|
syl |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) e. RR ) |
| 12 |
1
|
dnicld1 |
|- ( ph -> ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) e. RR ) |
| 13 |
11
|
leabsd |
|- ( ph -> ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) <_ ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
| 14 |
11 12 3 13
|
lesub2dd |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) <_ ( ( 1 / 2 ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) |
| 15 |
3
|
recnd |
|- ( ph -> ( 1 / 2 ) e. CC ) |
| 16 |
8
|
recnd |
|- ( ph -> ( |_ ` ( B + ( 1 / 2 ) ) ) e. CC ) |
| 17 |
1
|
recnd |
|- ( ph -> B e. CC ) |
| 18 |
15 16 17
|
subsub3d |
|- ( ph -> ( ( 1 / 2 ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) = ( ( ( 1 / 2 ) + B ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) ) |
| 19 |
15 17
|
addcomd |
|- ( ph -> ( ( 1 / 2 ) + B ) = ( B + ( 1 / 2 ) ) ) |
| 20 |
19
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) + B ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) = ( ( B + ( 1 / 2 ) ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) ) |
| 21 |
17 16 15
|
subsub3d |
|- ( ph -> ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) = ( ( B + ( 1 / 2 ) ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) ) |
| 22 |
21
|
eqcomd |
|- ( ph -> ( ( B + ( 1 / 2 ) ) - ( |_ ` ( B + ( 1 / 2 ) ) ) ) = ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |
| 23 |
18 20 22
|
3eqtrd |
|- ( ph -> ( ( 1 / 2 ) - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) = ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |
| 24 |
14 23
|
breqtrd |
|- ( ph -> ( ( 1 / 2 ) - ( abs ` ( ( |_ ` ( B + ( 1 / 2 ) ) ) - B ) ) ) <_ ( B - ( ( |_ ` ( B + ( 1 / 2 ) ) ) - ( 1 / 2 ) ) ) ) |