Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
2 |
|
halfre |
⊢ ( 1 / 2 ) ∈ ℝ |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℝ ) |
4 |
|
readdcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
5 |
1 3 4
|
syl2anc2 |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ ) |
6 |
|
flltp1 |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) < ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) < ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) ) |
8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
9 |
|
2halves |
⊢ ( 1 ∈ ℂ → ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
10 |
8 9
|
ax-mp |
⊢ ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 |
11 |
10
|
eqcomi |
⊢ 1 = ( ( 1 / 2 ) + ( 1 / 2 ) ) |
12 |
11
|
a1i |
⊢ ( 𝐴 ∈ ℝ → 1 = ( ( 1 / 2 ) + ( 1 / 2 ) ) ) |
13 |
12
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
14 |
|
reflcl |
⊢ ( ( 𝐴 + ( 1 / 2 ) ) ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
15 |
5 14
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ) |
16 |
15
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ) |
17 |
3
|
recnd |
⊢ ( 𝐴 ∈ ℝ → ( 1 / 2 ) ∈ ℂ ) |
18 |
16 17 17
|
3jca |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) ) |
19 |
|
addass |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( ( 1 / 2 ) + ( 1 / 2 ) ) ) = ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
22 |
13 21
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + 1 ) = ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
23 |
7 22
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + ( 1 / 2 ) ) < ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
24 |
15 3
|
jca |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) ) |
25 |
|
readdcl |
⊢ ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) ∈ ℝ ∧ ( 1 / 2 ) ∈ ℝ ) → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ∈ ℝ ) |
26 |
24 25
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ∈ ℝ ) |
27 |
1 26 3
|
ltadd1d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ↔ ( 𝐴 + ( 1 / 2 ) ) < ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) + ( 1 / 2 ) ) ) ) |
28 |
23 27
|
mpbird |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ) |
29 |
1 26
|
posdifd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 < ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) ↔ 0 < ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) − 𝐴 ) ) ) |
30 |
28 29
|
mpbid |
⊢ ( 𝐴 ∈ ℝ → 0 < ( ( ( ⌊ ‘ ( 𝐴 + ( 1 / 2 ) ) ) + ( 1 / 2 ) ) − 𝐴 ) ) |