| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dpval2.a |  |-  A e. NN0 | 
						
							| 2 |  | dpval2.b |  |-  B e. RR | 
						
							| 3 | 2 | recni |  |-  B e. CC | 
						
							| 4 |  | 10nn |  |-  ; 1 0 e. NN | 
						
							| 5 | 4 | nncni |  |-  ; 1 0 e. CC | 
						
							| 6 | 4 | nnne0i |  |-  ; 1 0 =/= 0 | 
						
							| 7 | 3 5 6 | divcan2i |  |-  ( ; 1 0 x. ( B / ; 1 0 ) ) = B | 
						
							| 8 | 7 | oveq2i |  |-  ( ( ; 1 0 x. A ) + ( ; 1 0 x. ( B / ; 1 0 ) ) ) = ( ( ; 1 0 x. A ) + B ) | 
						
							| 9 | 1 2 | dpval2 |  |-  ( A . B ) = ( A + ( B / ; 1 0 ) ) | 
						
							| 10 | 9 | oveq2i |  |-  ( ; 1 0 x. ( A . B ) ) = ( ; 1 0 x. ( A + ( B / ; 1 0 ) ) ) | 
						
							| 11 |  | dpcl |  |-  ( ( A e. NN0 /\ B e. RR ) -> ( A . B ) e. RR ) | 
						
							| 12 | 1 2 11 | mp2an |  |-  ( A . B ) e. RR | 
						
							| 13 | 12 | recni |  |-  ( A . B ) e. CC | 
						
							| 14 | 5 13 | mulcomi |  |-  ( ; 1 0 x. ( A . B ) ) = ( ( A . B ) x. ; 1 0 ) | 
						
							| 15 | 1 | nn0cni |  |-  A e. CC | 
						
							| 16 | 3 5 6 | divcli |  |-  ( B / ; 1 0 ) e. CC | 
						
							| 17 | 5 15 16 | adddii |  |-  ( ; 1 0 x. ( A + ( B / ; 1 0 ) ) ) = ( ( ; 1 0 x. A ) + ( ; 1 0 x. ( B / ; 1 0 ) ) ) | 
						
							| 18 | 10 14 17 | 3eqtr3i |  |-  ( ( A . B ) x. ; 1 0 ) = ( ( ; 1 0 x. A ) + ( ; 1 0 x. ( B / ; 1 0 ) ) ) | 
						
							| 19 |  | dfdec10 |  |-  ; A B = ( ( ; 1 0 x. A ) + B ) | 
						
							| 20 | 8 18 19 | 3eqtr4i |  |-  ( ( A . B ) x. ; 1 0 ) = ; A B |