Metamath Proof Explorer


Theorem drgext0g

Description: The additive neutral element of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)

Ref Expression
Hypotheses drgext.b
|- B = ( ( subringAlg ` E ) ` U )
drgext.1
|- ( ph -> E e. DivRing )
drgext.2
|- ( ph -> U e. ( SubRing ` E ) )
Assertion drgext0g
|- ( ph -> ( 0g ` E ) = ( 0g ` B ) )

Proof

Step Hyp Ref Expression
1 drgext.b
 |-  B = ( ( subringAlg ` E ) ` U )
2 drgext.1
 |-  ( ph -> E e. DivRing )
3 drgext.2
 |-  ( ph -> U e. ( SubRing ` E ) )
4 1 a1i
 |-  ( ph -> B = ( ( subringAlg ` E ) ` U ) )
5 eqidd
 |-  ( ph -> ( 0g ` E ) = ( 0g ` E ) )
6 eqid
 |-  ( Base ` E ) = ( Base ` E )
7 6 subrgss
 |-  ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) )
8 3 7 syl
 |-  ( ph -> U C_ ( Base ` E ) )
9 4 5 8 sralmod0
 |-  ( ph -> ( 0g ` E ) = ( 0g ` B ) )