Description: The additive neutral element of a division ring extension. (Contributed by Thierry Arnoux, 17-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
drgext.1 | |- ( ph -> E e. DivRing ) |
||
drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
||
Assertion | drgext0g | |- ( ph -> ( 0g ` E ) = ( 0g ` B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drgext.b | |- B = ( ( subringAlg ` E ) ` U ) |
|
2 | drgext.1 | |- ( ph -> E e. DivRing ) |
|
3 | drgext.2 | |- ( ph -> U e. ( SubRing ` E ) ) |
|
4 | 1 | a1i | |- ( ph -> B = ( ( subringAlg ` E ) ` U ) ) |
5 | eqidd | |- ( ph -> ( 0g ` E ) = ( 0g ` E ) ) |
|
6 | eqid | |- ( Base ` E ) = ( Base ` E ) |
|
7 | 6 | subrgss | |- ( U e. ( SubRing ` E ) -> U C_ ( Base ` E ) ) |
8 | 3 7 | syl | |- ( ph -> U C_ ( Base ` E ) ) |
9 | 4 5 8 | sralmod0 | |- ( ph -> ( 0g ` E ) = ( 0g ` B ) ) |