| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dsmmval.b |
|- B = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
| 2 |
|
elex |
|- ( R e. V -> R e. _V ) |
| 3 |
1
|
ssrab3 |
|- B C_ ( Base ` ( S Xs_ R ) ) |
| 4 |
|
eqid |
|- ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s B ) |
| 5 |
|
eqid |
|- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
| 6 |
4 5
|
ressbas2 |
|- ( B C_ ( Base ` ( S Xs_ R ) ) -> B = ( Base ` ( ( S Xs_ R ) |`s B ) ) ) |
| 7 |
3 6
|
ax-mp |
|- B = ( Base ` ( ( S Xs_ R ) |`s B ) ) |
| 8 |
1
|
dsmmval |
|- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) ) |
| 9 |
8
|
fveq2d |
|- ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s B ) ) ) |
| 10 |
7 9
|
eqtr4id |
|- ( R e. _V -> B = ( Base ` ( S (+)m R ) ) ) |
| 11 |
2 10
|
syl |
|- ( R e. V -> B = ( Base ` ( S (+)m R ) ) ) |