Description: X is a subset of CC . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdmsscn.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvdmsscn.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
||
| Assertion | dvdmsscn | |- ( ph -> X C_ CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdmsscn.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvdmsscn.x | |- ( ph -> X e. ( ( TopOpen ` CCfld ) |`t S ) ) |
|
| 3 | restsspw | |- ( ( TopOpen ` CCfld ) |`t S ) C_ ~P S |
|
| 4 | 3 2 | sselid | |- ( ph -> X e. ~P S ) |
| 5 | elpwi | |- ( X e. ~P S -> X C_ S ) |
|
| 6 | 4 5 | syl | |- ( ph -> X C_ S ) |
| 7 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 8 | 1 7 | syl | |- ( ph -> S C_ CC ) |
| 9 | 6 8 | sstrd | |- ( ph -> X C_ CC ) |