| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptmulf.ph |
|- F/ x ph |
| 2 |
|
dvmptmulf.s |
|- ( ph -> S e. { RR , CC } ) |
| 3 |
|
dvmptmulf.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 4 |
|
dvmptmulf.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
| 5 |
|
dvmptmulf.ab |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
| 6 |
|
dvmptmulf.c |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
| 7 |
|
dvmptmulf.d |
|- ( ( ph /\ x e. X ) -> D e. W ) |
| 8 |
|
dvmptmulf.cd |
|- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
| 9 |
|
nfcv |
|- F/_ y ( A x. C ) |
| 10 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
| 11 |
|
nfcv |
|- F/_ x x. |
| 12 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
| 13 |
10 11 12
|
nfov |
|- F/_ x ( [_ y / x ]_ A x. [_ y / x ]_ C ) |
| 14 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
| 15 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
| 16 |
14 15
|
oveq12d |
|- ( x = y -> ( A x. C ) = ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) |
| 17 |
9 13 16
|
cbvmpt |
|- ( x e. X |-> ( A x. C ) ) = ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) |
| 18 |
17
|
oveq2i |
|- ( S _D ( x e. X |-> ( A x. C ) ) ) = ( S _D ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) ) |
| 19 |
18
|
a1i |
|- ( ph -> ( S _D ( x e. X |-> ( A x. C ) ) ) = ( S _D ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) ) ) |
| 20 |
|
nfv |
|- F/ x y e. X |
| 21 |
1 20
|
nfan |
|- F/ x ( ph /\ y e. X ) |
| 22 |
10
|
nfel1 |
|- F/ x [_ y / x ]_ A e. CC |
| 23 |
21 22
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. CC ) |
| 24 |
|
eleq1w |
|- ( x = y -> ( x e. X <-> y e. X ) ) |
| 25 |
24
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. X ) <-> ( ph /\ y e. X ) ) ) |
| 26 |
14
|
eleq1d |
|- ( x = y -> ( A e. CC <-> [_ y / x ]_ A e. CC ) ) |
| 27 |
25 26
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> A e. CC ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. CC ) ) ) |
| 28 |
23 27 3
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. CC ) |
| 29 |
|
nfcv |
|- F/_ x y |
| 30 |
29
|
nfcsb1 |
|- F/_ x [_ y / x ]_ B |
| 31 |
|
nfcv |
|- F/_ x V |
| 32 |
30 31
|
nfel |
|- F/ x [_ y / x ]_ B e. V |
| 33 |
21 32
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. V ) |
| 34 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 35 |
34
|
eleq1d |
|- ( x = y -> ( B e. V <-> [_ y / x ]_ B e. V ) ) |
| 36 |
25 35
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> B e. V ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. V ) ) ) |
| 37 |
33 36 4
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. V ) |
| 38 |
|
nfcv |
|- F/_ y A |
| 39 |
|
csbeq1a |
|- ( y = x -> [_ y / x ]_ A = [_ x / y ]_ [_ y / x ]_ A ) |
| 40 |
|
csbcow |
|- [_ x / y ]_ [_ y / x ]_ A = [_ x / x ]_ A |
| 41 |
|
csbid |
|- [_ x / x ]_ A = A |
| 42 |
40 41
|
eqtri |
|- [_ x / y ]_ [_ y / x ]_ A = A |
| 43 |
42
|
a1i |
|- ( y = x -> [_ x / y ]_ [_ y / x ]_ A = A ) |
| 44 |
39 43
|
eqtrd |
|- ( y = x -> [_ y / x ]_ A = A ) |
| 45 |
10 38 44
|
cbvmpt |
|- ( y e. X |-> [_ y / x ]_ A ) = ( x e. X |-> A ) |
| 46 |
45
|
oveq2i |
|- ( S _D ( y e. X |-> [_ y / x ]_ A ) ) = ( S _D ( x e. X |-> A ) ) |
| 47 |
46
|
a1i |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ A ) ) = ( S _D ( x e. X |-> A ) ) ) |
| 48 |
|
nfcv |
|- F/_ y B |
| 49 |
48 30 34
|
cbvmpt |
|- ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B ) |
| 50 |
49
|
a1i |
|- ( ph -> ( x e. X |-> B ) = ( y e. X |-> [_ y / x ]_ B ) ) |
| 51 |
47 5 50
|
3eqtrd |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ A ) ) = ( y e. X |-> [_ y / x ]_ B ) ) |
| 52 |
12
|
nfel1 |
|- F/ x [_ y / x ]_ C e. CC |
| 53 |
21 52
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ C e. CC ) |
| 54 |
15
|
eleq1d |
|- ( x = y -> ( C e. CC <-> [_ y / x ]_ C e. CC ) ) |
| 55 |
25 54
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> C e. CC ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ C e. CC ) ) ) |
| 56 |
53 55 6
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ C e. CC ) |
| 57 |
29
|
nfcsb1 |
|- F/_ x [_ y / x ]_ D |
| 58 |
|
nfcv |
|- F/_ x W |
| 59 |
57 58
|
nfel |
|- F/ x [_ y / x ]_ D e. W |
| 60 |
21 59
|
nfim |
|- F/ x ( ( ph /\ y e. X ) -> [_ y / x ]_ D e. W ) |
| 61 |
|
csbeq1a |
|- ( x = y -> D = [_ y / x ]_ D ) |
| 62 |
61
|
eleq1d |
|- ( x = y -> ( D e. W <-> [_ y / x ]_ D e. W ) ) |
| 63 |
25 62
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. X ) -> D e. W ) <-> ( ( ph /\ y e. X ) -> [_ y / x ]_ D e. W ) ) ) |
| 64 |
60 63 7
|
chvarfv |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ D e. W ) |
| 65 |
|
nfcv |
|- F/_ y C |
| 66 |
|
eqcom |
|- ( x = y <-> y = x ) |
| 67 |
66
|
imbi1i |
|- ( ( x = y -> C = [_ y / x ]_ C ) <-> ( y = x -> C = [_ y / x ]_ C ) ) |
| 68 |
|
eqcom |
|- ( C = [_ y / x ]_ C <-> [_ y / x ]_ C = C ) |
| 69 |
68
|
imbi2i |
|- ( ( y = x -> C = [_ y / x ]_ C ) <-> ( y = x -> [_ y / x ]_ C = C ) ) |
| 70 |
67 69
|
bitri |
|- ( ( x = y -> C = [_ y / x ]_ C ) <-> ( y = x -> [_ y / x ]_ C = C ) ) |
| 71 |
15 70
|
mpbi |
|- ( y = x -> [_ y / x ]_ C = C ) |
| 72 |
12 65 71
|
cbvmpt |
|- ( y e. X |-> [_ y / x ]_ C ) = ( x e. X |-> C ) |
| 73 |
72
|
oveq2i |
|- ( S _D ( y e. X |-> [_ y / x ]_ C ) ) = ( S _D ( x e. X |-> C ) ) |
| 74 |
73
|
a1i |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ C ) ) = ( S _D ( x e. X |-> C ) ) ) |
| 75 |
|
nfcv |
|- F/_ y D |
| 76 |
75 57 61
|
cbvmpt |
|- ( x e. X |-> D ) = ( y e. X |-> [_ y / x ]_ D ) |
| 77 |
76
|
a1i |
|- ( ph -> ( x e. X |-> D ) = ( y e. X |-> [_ y / x ]_ D ) ) |
| 78 |
74 8 77
|
3eqtrd |
|- ( ph -> ( S _D ( y e. X |-> [_ y / x ]_ C ) ) = ( y e. X |-> [_ y / x ]_ D ) ) |
| 79 |
2 28 37 51 56 64 78
|
dvmptmul |
|- ( ph -> ( S _D ( y e. X |-> ( [_ y / x ]_ A x. [_ y / x ]_ C ) ) ) = ( y e. X |-> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) ) ) |
| 80 |
30 11 12
|
nfov |
|- F/_ x ( [_ y / x ]_ B x. [_ y / x ]_ C ) |
| 81 |
|
nfcv |
|- F/_ x + |
| 82 |
57 11 10
|
nfov |
|- F/_ x ( [_ y / x ]_ D x. [_ y / x ]_ A ) |
| 83 |
80 81 82
|
nfov |
|- F/_ x ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) |
| 84 |
|
nfcv |
|- F/_ y ( ( B x. C ) + ( D x. A ) ) |
| 85 |
66
|
imbi1i |
|- ( ( x = y -> B = [_ y / x ]_ B ) <-> ( y = x -> B = [_ y / x ]_ B ) ) |
| 86 |
|
eqcom |
|- ( B = [_ y / x ]_ B <-> [_ y / x ]_ B = B ) |
| 87 |
86
|
imbi2i |
|- ( ( y = x -> B = [_ y / x ]_ B ) <-> ( y = x -> [_ y / x ]_ B = B ) ) |
| 88 |
85 87
|
bitri |
|- ( ( x = y -> B = [_ y / x ]_ B ) <-> ( y = x -> [_ y / x ]_ B = B ) ) |
| 89 |
34 88
|
mpbi |
|- ( y = x -> [_ y / x ]_ B = B ) |
| 90 |
89 71
|
oveq12d |
|- ( y = x -> ( [_ y / x ]_ B x. [_ y / x ]_ C ) = ( B x. C ) ) |
| 91 |
66
|
imbi1i |
|- ( ( x = y -> D = [_ y / x ]_ D ) <-> ( y = x -> D = [_ y / x ]_ D ) ) |
| 92 |
|
eqcom |
|- ( D = [_ y / x ]_ D <-> [_ y / x ]_ D = D ) |
| 93 |
92
|
imbi2i |
|- ( ( y = x -> D = [_ y / x ]_ D ) <-> ( y = x -> [_ y / x ]_ D = D ) ) |
| 94 |
91 93
|
bitri |
|- ( ( x = y -> D = [_ y / x ]_ D ) <-> ( y = x -> [_ y / x ]_ D = D ) ) |
| 95 |
61 94
|
mpbi |
|- ( y = x -> [_ y / x ]_ D = D ) |
| 96 |
95 44
|
oveq12d |
|- ( y = x -> ( [_ y / x ]_ D x. [_ y / x ]_ A ) = ( D x. A ) ) |
| 97 |
90 96
|
oveq12d |
|- ( y = x -> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) = ( ( B x. C ) + ( D x. A ) ) ) |
| 98 |
83 84 97
|
cbvmpt |
|- ( y e. X |-> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) ) = ( x e. X |-> ( ( B x. C ) + ( D x. A ) ) ) |
| 99 |
98
|
a1i |
|- ( ph -> ( y e. X |-> ( ( [_ y / x ]_ B x. [_ y / x ]_ C ) + ( [_ y / x ]_ D x. [_ y / x ]_ A ) ) ) = ( x e. X |-> ( ( B x. C ) + ( D x. A ) ) ) ) |
| 100 |
19 79 99
|
3eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( A x. C ) ) ) = ( x e. X |-> ( ( B x. C ) + ( D x. A ) ) ) ) |