| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptmulf.ph |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
dvmptmulf.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 3 |
|
dvmptmulf.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 4 |
|
dvmptmulf.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) |
| 5 |
|
dvmptmulf.ab |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 6 |
|
dvmptmulf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 7 |
|
dvmptmulf.d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) |
| 8 |
|
dvmptmulf.cd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑦 ( 𝐴 · 𝐶 ) |
| 10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
| 11 |
|
nfcv |
⊢ Ⅎ 𝑥 · |
| 12 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 13 |
10 11 12
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 14 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 15 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 16 |
14 15
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 17 |
9 13 16
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 18 |
17
|
oveq2i |
⊢ ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) ) |
| 20 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑋 |
| 21 |
1 20
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) |
| 22 |
10
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ |
| 23 |
21 22
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 24 |
|
eleq1w |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋 ) ) |
| 25 |
24
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 26 |
14
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) |
| 27 |
25 26
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) ) ) |
| 28 |
23 27 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ ℂ ) |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
| 30 |
29
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑉 |
| 32 |
30 31
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 |
| 33 |
21 32
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 34 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 35 |
34
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∈ 𝑉 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) |
| 36 |
25 35
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) ) ) |
| 37 |
33 36 4
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∈ 𝑉 ) |
| 38 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
| 39 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 40 |
|
csbcow |
⊢ ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑥 / 𝑥 ⦌ 𝐴 |
| 41 |
|
csbid |
⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐴 = 𝐴 |
| 42 |
40 41
|
eqtri |
⊢ ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 |
| 43 |
42
|
a1i |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑥 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 44 |
39 43
|
eqtrd |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐴 ) |
| 45 |
10 38 44
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 46 |
45
|
oveq2i |
⊢ ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ) |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
| 49 |
48 30 34
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 51 |
47 5 50
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 52 |
12
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ |
| 53 |
21 52
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 54 |
15
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) |
| 55 |
25 54
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) ) |
| 56 |
53 55 6
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
| 57 |
29
|
nfcsb1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐷 |
| 58 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑊 |
| 59 |
57 58
|
nfel |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 |
| 60 |
21 59
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) |
| 61 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) |
| 62 |
61
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐷 ∈ 𝑊 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) ) |
| 63 |
25 62
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ 𝑊 ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) ) ) |
| 64 |
60 63 7
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ∈ 𝑊 ) |
| 65 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐶 |
| 66 |
|
eqcom |
⊢ ( 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 ) |
| 67 |
66
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ( 𝑦 = 𝑥 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 68 |
|
eqcom |
⊢ ( 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
| 69 |
68
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) ) |
| 70 |
67 69
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) ) |
| 71 |
15 70
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = 𝐶 ) |
| 72 |
12 65 71
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) |
| 73 |
72
|
oveq2i |
⊢ ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) |
| 74 |
73
|
a1i |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) ) |
| 75 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
| 76 |
75 57 61
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ) |
| 78 |
74 8 77
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) = ( 𝑦 ∈ 𝑋 ↦ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ) |
| 79 |
2 28 37 51 56 64 78
|
dvmptmul |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑦 ∈ 𝑋 ↦ ( ⦋ 𝑦 / 𝑥 ⦌ 𝐴 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) ) ) |
| 80 |
30 11 12
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 81 |
|
nfcv |
⊢ Ⅎ 𝑥 + |
| 82 |
57 11 10
|
nfov |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
| 83 |
80 81 82
|
nfov |
⊢ Ⅎ 𝑥 ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) |
| 84 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) |
| 85 |
66
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ) |
| 86 |
|
eqcom |
⊢ ( 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 87 |
86
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
| 88 |
85 87
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) ) |
| 89 |
34 88
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐵 ) |
| 90 |
89 71
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 · 𝐶 ) ) |
| 91 |
66
|
imbi1i |
⊢ ( ( 𝑥 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ↔ ( 𝑦 = 𝑥 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ) |
| 92 |
|
eqcom |
⊢ ( 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
| 93 |
92
|
imbi2i |
⊢ ( ( 𝑦 = 𝑥 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) ) |
| 94 |
91 93
|
bitri |
⊢ ( ( 𝑥 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑥 ⦌ 𝐷 ) ↔ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) ) |
| 95 |
61 94
|
mpbi |
⊢ ( 𝑦 = 𝑥 → ⦋ 𝑦 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
| 96 |
95 44
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) = ( 𝐷 · 𝐴 ) ) |
| 97 |
90 96
|
oveq12d |
⊢ ( 𝑦 = 𝑥 → ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) = ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) |
| 98 |
83 84 97
|
cbvmpt |
⊢ ( 𝑦 ∈ 𝑋 ↦ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) |
| 99 |
98
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 ↦ ( ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 · ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) + ( ⦋ 𝑦 / 𝑥 ⦌ 𝐷 · ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) ) |
| 100 |
19 79 99
|
3eqtrd |
⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) ) |