| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnmptdivc.s |
⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) |
| 2 |
|
dvnmptdivc.x |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 3 |
|
dvnmptdivc.a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 4 |
|
dvnmptdivc.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) |
| 5 |
|
dvnmptdivc.dvn |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) |
| 6 |
|
dvnmptdivc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 7 |
|
dvnmptdivc.cne0 |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 8 |
|
dvnmptdivc.8 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝑛 ∈ ( 0 ... 𝑀 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝜑 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑘 = 0 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) ) |
| 12 |
|
csbeq1 |
⊢ ( 𝑘 = 0 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 13 |
12
|
oveq1d |
⊢ ( 𝑘 = 0 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝑘 = 0 → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 15 |
11 14
|
eqeq12d |
⊢ ( 𝑘 = 0 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 16 |
15
|
imbi2d |
⊢ ( 𝑘 = 0 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) |
| 18 |
|
csbeq1 |
⊢ ( 𝑘 = 𝑗 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
| 19 |
18
|
oveq1d |
⊢ ( 𝑘 = 𝑗 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
| 20 |
19
|
mpteq2dv |
⊢ ( 𝑘 = 𝑗 → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 21 |
17 20
|
eqeq12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 24 |
|
csbeq1 |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
| 26 |
25
|
mpteq2dv |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 27 |
23 26
|
eqeq12d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 28 |
27
|
imbi2d |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
| 29 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) ) |
| 30 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
| 31 |
30
|
equcoms |
⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
| 32 |
31
|
eqcomd |
⊢ ( 𝑘 = 𝑛 → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 = 𝐵 ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑘 = 𝑛 → ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) |
| 34 |
33
|
mpteq2dv |
⊢ ( 𝑘 = 𝑛 → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |
| 35 |
29 34
|
eqeq12d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) |
| 36 |
35
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑘 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ↔ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) ) |
| 37 |
|
recnprss |
⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) |
| 38 |
1 37
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 39 |
|
cnex |
⊢ ℂ ∈ V |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
| 41 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 42 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ≠ 0 ) |
| 43 |
3 41 42
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 44 |
43
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) : 𝑋 ⟶ ℂ ) |
| 45 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 46 |
40 1 44 2 45
|
syl22anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 47 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) |
| 48 |
38 46 47
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) |
| 49 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
| 50 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 51 |
8 50
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 0 ) ) |
| 52 |
|
eluzfz1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 53 |
51 52
|
syl |
⊢ ( 𝜑 → 0 ∈ ( 0 ... 𝑀 ) ) |
| 54 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) |
| 55 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) |
| 56 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑋 |
| 57 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 0 / 𝑛 ⦌ 𝐵 |
| 58 |
56 57
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 59 |
55 58
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 60 |
54 59
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
| 61 |
|
c0ex |
⊢ 0 ∈ V |
| 62 |
|
eleq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ 0 ∈ ( 0 ... 𝑀 ) ) ) |
| 63 |
62
|
anbi2d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) ) ) |
| 64 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ) |
| 65 |
|
csbeq1a |
⊢ ( 𝑛 = 0 → 𝐵 = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 66 |
65
|
mpteq2dv |
⊢ ( 𝑛 = 0 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
| 67 |
64 66
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) ) |
| 68 |
63 67
|
imbi12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) ) ) |
| 69 |
60 61 68 5
|
vtoclf |
⊢ ( ( 𝜑 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
| 70 |
49 53 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ) |
| 71 |
70
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) ) |
| 73 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 74 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
| 75 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ( 0 ... 𝑀 ) ) |
| 76 |
|
0re |
⊢ 0 ∈ ℝ |
| 77 |
|
nfcv |
⊢ Ⅎ 𝑛 0 |
| 78 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) |
| 79 |
|
nfcv |
⊢ Ⅎ 𝑛 ℂ |
| 80 |
57 79
|
nfel |
⊢ Ⅎ 𝑛 ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ |
| 81 |
78 80
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 82 |
62
|
3anbi3d |
⊢ ( 𝑛 = 0 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) ) ) |
| 83 |
65
|
eleq1d |
⊢ ( 𝑛 = 0 → ( 𝐵 ∈ ℂ ↔ ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
| 84 |
82 83
|
imbi12d |
⊢ ( 𝑛 = 0 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 85 |
77 81 84 4
|
vtoclgf |
⊢ ( 0 ∈ ℝ → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
| 86 |
76 85
|
ax-mp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 0 ∈ ( 0 ... 𝑀 ) ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 87 |
74 73 75 86
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 88 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 89 |
88
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ ⦋ 0 / 𝑛 ⦌ 𝐵 ∈ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 90 |
73 87 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ ⦋ 0 / 𝑛 ⦌ 𝐵 ) ‘ 𝑥 ) = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 91 |
72 90
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 0 / 𝑛 ⦌ 𝐵 = ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) ) |
| 92 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ) |
| 93 |
|
elpm2r |
⊢ ( ( ( ℂ ∈ V ∧ 𝑆 ∈ { ℝ , ℂ } ) ∧ ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ℂ ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 94 |
40 1 92 2 93
|
syl22anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 95 |
|
dvn0 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 96 |
38 94 95
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) |
| 97 |
96
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 0 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) ) |
| 99 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) |
| 100 |
99
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 101 |
73 3 100
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ‘ 𝑥 ) = 𝐴 ) |
| 102 |
91 98 101
|
3eqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 = ⦋ 0 / 𝑛 ⦌ 𝐵 ) |
| 103 |
102
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) = ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) |
| 104 |
103
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 105 |
48 104
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 106 |
105
|
a1i |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 0 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 0 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 0 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 107 |
|
simp3 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝜑 ) |
| 108 |
|
simp1 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝑗 ∈ ( 0 ..^ 𝑀 ) ) |
| 109 |
|
simpr |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → 𝜑 ) |
| 110 |
|
simpl |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 111 |
109 110
|
mpd |
⊢ ( ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 112 |
111
|
3adant1 |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 113 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → 𝑆 ⊆ ℂ ) |
| 114 |
46
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 115 |
|
elfzofz |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 116 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
| 117 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 118 |
115 117
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 119 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
| 120 |
113 114 118 119
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
| 121 |
|
oveq2 |
⊢ ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 122 |
121
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) |
| 123 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ⊆ ℂ ) |
| 124 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 125 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 126 |
125 116
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
| 127 |
115 126
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ℕ0 ) |
| 128 |
123 124 127 119
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
| 129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) ) ) |
| 130 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑆 ∈ { ℝ , ℂ } ) |
| 131 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 132 |
49
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
| 133 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 134 |
132 133 131
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) |
| 135 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑗 |
| 136 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 137 |
135
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ 𝑗 / 𝑛 ⦌ 𝐵 |
| 138 |
137 79
|
nfel |
⊢ Ⅎ 𝑛 ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ |
| 139 |
136 138
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 140 |
|
eleq1 |
⊢ ( 𝑛 = 𝑗 → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) |
| 141 |
140
|
3anbi3d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) ) |
| 142 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
| 143 |
142
|
eleq1d |
⊢ ( 𝑛 = 𝑗 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
| 144 |
141 143
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 145 |
135 139 144 4
|
vtoclgf |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
| 146 |
131 134 145
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 147 |
115 146
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 148 |
|
fzofzp1 |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 149 |
148
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 150 |
115 132
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝜑 ) |
| 151 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 152 |
150 151 149
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
| 153 |
|
nfcv |
⊢ Ⅎ 𝑛 ( 𝑗 + 1 ) |
| 154 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 155 |
153
|
nfcsb1 |
⊢ Ⅎ 𝑛 ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 |
| 156 |
155 79
|
nfel |
⊢ Ⅎ 𝑛 ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ |
| 157 |
154 156
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 158 |
|
eleq1 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑛 ∈ ( 0 ... 𝑀 ) ↔ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
| 159 |
158
|
3anbi3d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) ) |
| 160 |
|
csbeq1a |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → 𝐵 = ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
| 161 |
160
|
eleq1d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝐵 ∈ ℂ ↔ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
| 162 |
159 161
|
imbi12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 163 |
153 157 162 4
|
vtoclgf |
⊢ ( ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) ) |
| 164 |
149 152 163
|
sylc |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ 𝑥 ∈ 𝑋 ) → ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ∈ ℂ ) |
| 165 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝜑 ) |
| 166 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 167 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) |
| 168 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) |
| 169 |
56 137
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
| 170 |
168 169
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) |
| 171 |
167 170
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
| 172 |
140
|
anbi2d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ) ) |
| 173 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
| 174 |
142
|
mpteq2dv |
⊢ ( 𝑛 = 𝑗 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
| 175 |
173 174
|
eqeq12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) ) |
| 176 |
172 175
|
imbi12d |
⊢ ( 𝑛 = 𝑗 → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) ) ) |
| 177 |
171 176 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
| 178 |
165 166 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) |
| 179 |
178
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) |
| 180 |
179
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) ) |
| 181 |
165 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ) |
| 182 |
|
dvnp1 |
⊢ ( ( 𝑆 ⊆ ℂ ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( ℂ ↑pm 𝑆 ) ∧ 𝑗 ∈ ℕ0 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) ) |
| 183 |
123 181 127 182
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) ) |
| 184 |
183
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑗 ) ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 185 |
148
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 186 |
165 185
|
jca |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) |
| 187 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) |
| 188 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) |
| 189 |
56 155
|
nfmpt |
⊢ Ⅎ 𝑛 ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
| 190 |
188 189
|
nfeq |
⊢ Ⅎ 𝑛 ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) |
| 191 |
187 190
|
nfim |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
| 192 |
158
|
anbi2d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) ↔ ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) ) ) |
| 193 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 194 |
160
|
mpteq2dv |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
| 195 |
193 194
|
eqeq12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ↔ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) ) |
| 196 |
192 195
|
imbi12d |
⊢ ( 𝑛 = ( 𝑗 + 1 ) → ( ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) ↔ ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) ) ) |
| 197 |
153 191 196 5
|
vtoclgf |
⊢ ( ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) → ( ( 𝜑 ∧ ( 𝑗 + 1 ) ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) ) |
| 198 |
185 186 197
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
| 199 |
180 184 198
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑗 / 𝑛 ⦌ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 ) ) |
| 200 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ∈ ℂ ) |
| 201 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → 𝐶 ≠ 0 ) |
| 202 |
130 147 164 199 200 201
|
dvmptdivc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 203 |
202
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 204 |
129 122 203
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 205 |
204
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) = ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) ) |
| 206 |
205 120 122
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 207 |
120 122 206
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ..^ 𝑀 ) ) ∧ ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 208 |
107 108 112 207
|
syl21anc |
⊢ ( ( 𝑗 ∈ ( 0 ..^ 𝑀 ) ∧ ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ∧ 𝜑 ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) |
| 209 |
208
|
3exp |
⊢ ( 𝑗 ∈ ( 0 ..^ 𝑀 ) → ( ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑗 ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ 𝑗 / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ ( 𝑗 + 1 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ⦋ ( 𝑗 + 1 ) / 𝑛 ⦌ 𝐵 / 𝐶 ) ) ) ) ) |
| 210 |
16 22 28 36 106 209
|
fzind2 |
⊢ ( 𝑛 ∈ ( 0 ... 𝑀 ) → ( 𝜑 → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) ) |
| 211 |
9 10 210
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑆 D𝑛 ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) ‘ 𝑛 ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐵 / 𝐶 ) ) ) |