| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvnmptdivc.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvnmptdivc.x |
|- ( ph -> X C_ S ) |
| 3 |
|
dvnmptdivc.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 4 |
|
dvnmptdivc.b |
|- ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) |
| 5 |
|
dvnmptdivc.dvn |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) |
| 6 |
|
dvnmptdivc.c |
|- ( ph -> C e. CC ) |
| 7 |
|
dvnmptdivc.cne0 |
|- ( ph -> C =/= 0 ) |
| 8 |
|
dvnmptdivc.8 |
|- ( ph -> M e. NN0 ) |
| 9 |
|
simpr |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> n e. ( 0 ... M ) ) |
| 10 |
|
simpl |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> ph ) |
| 11 |
|
fveq2 |
|- ( k = 0 -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) ) |
| 12 |
|
csbeq1 |
|- ( k = 0 -> [_ k / n ]_ B = [_ 0 / n ]_ B ) |
| 13 |
12
|
oveq1d |
|- ( k = 0 -> ( [_ k / n ]_ B / C ) = ( [_ 0 / n ]_ B / C ) ) |
| 14 |
13
|
mpteq2dv |
|- ( k = 0 -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) |
| 15 |
11 14
|
eqeq12d |
|- ( k = 0 -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) |
| 16 |
15
|
imbi2d |
|- ( k = 0 -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) ) |
| 17 |
|
fveq2 |
|- ( k = j -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) |
| 18 |
|
csbeq1 |
|- ( k = j -> [_ k / n ]_ B = [_ j / n ]_ B ) |
| 19 |
18
|
oveq1d |
|- ( k = j -> ( [_ k / n ]_ B / C ) = ( [_ j / n ]_ B / C ) ) |
| 20 |
19
|
mpteq2dv |
|- ( k = j -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) |
| 21 |
17 20
|
eqeq12d |
|- ( k = j -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
| 22 |
21
|
imbi2d |
|- ( k = j -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) ) |
| 23 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) ) |
| 24 |
|
csbeq1 |
|- ( k = ( j + 1 ) -> [_ k / n ]_ B = [_ ( j + 1 ) / n ]_ B ) |
| 25 |
24
|
oveq1d |
|- ( k = ( j + 1 ) -> ( [_ k / n ]_ B / C ) = ( [_ ( j + 1 ) / n ]_ B / C ) ) |
| 26 |
25
|
mpteq2dv |
|- ( k = ( j + 1 ) -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 27 |
23 26
|
eqeq12d |
|- ( k = ( j + 1 ) -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) |
| 28 |
27
|
imbi2d |
|- ( k = ( j + 1 ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) ) |
| 29 |
|
fveq2 |
|- ( k = n -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) ) |
| 30 |
|
csbeq1a |
|- ( n = k -> B = [_ k / n ]_ B ) |
| 31 |
30
|
equcoms |
|- ( k = n -> B = [_ k / n ]_ B ) |
| 32 |
31
|
eqcomd |
|- ( k = n -> [_ k / n ]_ B = B ) |
| 33 |
32
|
oveq1d |
|- ( k = n -> ( [_ k / n ]_ B / C ) = ( B / C ) ) |
| 34 |
33
|
mpteq2dv |
|- ( k = n -> ( x e. X |-> ( [_ k / n ]_ B / C ) ) = ( x e. X |-> ( B / C ) ) ) |
| 35 |
29 34
|
eqeq12d |
|- ( k = n -> ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) <-> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) |
| 36 |
35
|
imbi2d |
|- ( k = n -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` k ) = ( x e. X |-> ( [_ k / n ]_ B / C ) ) ) <-> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) ) |
| 37 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 38 |
1 37
|
syl |
|- ( ph -> S C_ CC ) |
| 39 |
|
cnex |
|- CC e. _V |
| 40 |
39
|
a1i |
|- ( ph -> CC e. _V ) |
| 41 |
6
|
adantr |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
| 42 |
7
|
adantr |
|- ( ( ph /\ x e. X ) -> C =/= 0 ) |
| 43 |
3 41 42
|
divcld |
|- ( ( ph /\ x e. X ) -> ( A / C ) e. CC ) |
| 44 |
43
|
fmpttd |
|- ( ph -> ( x e. X |-> ( A / C ) ) : X --> CC ) |
| 45 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( x e. X |-> ( A / C ) ) : X --> CC /\ X C_ S ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
| 46 |
40 1 44 2 45
|
syl22anc |
|- ( ph -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
| 47 |
|
dvn0 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( A / C ) ) ) |
| 48 |
38 46 47
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( A / C ) ) ) |
| 49 |
|
id |
|- ( ph -> ph ) |
| 50 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 51 |
8 50
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 52 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 53 |
51 52
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 54 |
|
nfv |
|- F/ n ( ph /\ 0 e. ( 0 ... M ) ) |
| 55 |
|
nfcv |
|- F/_ n ( ( S Dn ( x e. X |-> A ) ) ` 0 ) |
| 56 |
|
nfcv |
|- F/_ n X |
| 57 |
|
nfcsb1v |
|- F/_ n [_ 0 / n ]_ B |
| 58 |
56 57
|
nfmpt |
|- F/_ n ( x e. X |-> [_ 0 / n ]_ B ) |
| 59 |
55 58
|
nfeq |
|- F/ n ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) |
| 60 |
54 59
|
nfim |
|- F/ n ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
| 61 |
|
c0ex |
|- 0 e. _V |
| 62 |
|
eleq1 |
|- ( n = 0 -> ( n e. ( 0 ... M ) <-> 0 e. ( 0 ... M ) ) ) |
| 63 |
62
|
anbi2d |
|- ( n = 0 -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ 0 e. ( 0 ... M ) ) ) ) |
| 64 |
|
fveq2 |
|- ( n = 0 -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ) |
| 65 |
|
csbeq1a |
|- ( n = 0 -> B = [_ 0 / n ]_ B ) |
| 66 |
65
|
mpteq2dv |
|- ( n = 0 -> ( x e. X |-> B ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
| 67 |
64 66
|
eqeq12d |
|- ( n = 0 -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) ) |
| 68 |
63 67
|
imbi12d |
|- ( n = 0 -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) ) ) |
| 69 |
60 61 68 5
|
vtoclf |
|- ( ( ph /\ 0 e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
| 70 |
49 53 69
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> [_ 0 / n ]_ B ) ) |
| 71 |
70
|
fveq1d |
|- ( ph -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) ) |
| 73 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 74 |
|
simpl |
|- ( ( ph /\ x e. X ) -> ph ) |
| 75 |
53
|
adantr |
|- ( ( ph /\ x e. X ) -> 0 e. ( 0 ... M ) ) |
| 76 |
|
0re |
|- 0 e. RR |
| 77 |
|
nfcv |
|- F/_ n 0 |
| 78 |
|
nfv |
|- F/ n ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) |
| 79 |
|
nfcv |
|- F/_ n CC |
| 80 |
57 79
|
nfel |
|- F/ n [_ 0 / n ]_ B e. CC |
| 81 |
78 80
|
nfim |
|- F/ n ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) |
| 82 |
62
|
3anbi3d |
|- ( n = 0 -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) ) ) |
| 83 |
65
|
eleq1d |
|- ( n = 0 -> ( B e. CC <-> [_ 0 / n ]_ B e. CC ) ) |
| 84 |
82 83
|
imbi12d |
|- ( n = 0 -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) ) ) |
| 85 |
77 81 84 4
|
vtoclgf |
|- ( 0 e. RR -> ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) ) |
| 86 |
76 85
|
ax-mp |
|- ( ( ph /\ x e. X /\ 0 e. ( 0 ... M ) ) -> [_ 0 / n ]_ B e. CC ) |
| 87 |
74 73 75 86
|
syl3anc |
|- ( ( ph /\ x e. X ) -> [_ 0 / n ]_ B e. CC ) |
| 88 |
|
eqid |
|- ( x e. X |-> [_ 0 / n ]_ B ) = ( x e. X |-> [_ 0 / n ]_ B ) |
| 89 |
88
|
fvmpt2 |
|- ( ( x e. X /\ [_ 0 / n ]_ B e. CC ) -> ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) = [_ 0 / n ]_ B ) |
| 90 |
73 87 89
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( ( x e. X |-> [_ 0 / n ]_ B ) ` x ) = [_ 0 / n ]_ B ) |
| 91 |
72 90
|
eqtr2d |
|- ( ( ph /\ x e. X ) -> [_ 0 / n ]_ B = ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) ) |
| 92 |
3
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 93 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. { RR , CC } ) /\ ( ( x e. X |-> A ) : X --> CC /\ X C_ S ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
| 94 |
40 1 92 2 93
|
syl22anc |
|- ( ph -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
| 95 |
|
dvn0 |
|- ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> A ) ) |
| 96 |
38 94 95
|
syl2anc |
|- ( ph -> ( ( S Dn ( x e. X |-> A ) ) ` 0 ) = ( x e. X |-> A ) ) |
| 97 |
96
|
fveq1d |
|- ( ph -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> A ) ` x ) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ x e. X ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` 0 ) ` x ) = ( ( x e. X |-> A ) ` x ) ) |
| 99 |
|
eqid |
|- ( x e. X |-> A ) = ( x e. X |-> A ) |
| 100 |
99
|
fvmpt2 |
|- ( ( x e. X /\ A e. CC ) -> ( ( x e. X |-> A ) ` x ) = A ) |
| 101 |
73 3 100
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( ( x e. X |-> A ) ` x ) = A ) |
| 102 |
91 98 101
|
3eqtrrd |
|- ( ( ph /\ x e. X ) -> A = [_ 0 / n ]_ B ) |
| 103 |
102
|
oveq1d |
|- ( ( ph /\ x e. X ) -> ( A / C ) = ( [_ 0 / n ]_ B / C ) ) |
| 104 |
103
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) |
| 105 |
48 104
|
eqtrd |
|- ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) |
| 106 |
105
|
a1i |
|- ( M e. ( ZZ>= ` 0 ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` 0 ) = ( x e. X |-> ( [_ 0 / n ]_ B / C ) ) ) ) |
| 107 |
|
simp3 |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ph ) |
| 108 |
|
simp1 |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> j e. ( 0 ..^ M ) ) |
| 109 |
|
simpr |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ph ) |
| 110 |
|
simpl |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
| 111 |
109 110
|
mpd |
|- ( ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) |
| 112 |
111
|
3adant1 |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) |
| 113 |
38
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> S C_ CC ) |
| 114 |
46
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
| 115 |
|
elfzofz |
|- ( j e. ( 0 ..^ M ) -> j e. ( 0 ... M ) ) |
| 116 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
| 117 |
116
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> j e. NN0 ) |
| 118 |
115 117
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> j e. NN0 ) |
| 119 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) /\ j e. NN0 ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
| 120 |
113 114 118 119
|
syl3anc |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
| 121 |
|
oveq2 |
|- ( ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) = ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
| 122 |
121
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) = ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) ) |
| 123 |
38
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> S C_ CC ) |
| 124 |
46
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> ( A / C ) ) e. ( CC ^pm S ) ) |
| 125 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. ( 0 ... M ) ) |
| 126 |
125 116
|
syl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> j e. NN0 ) |
| 127 |
115 126
|
sylan2 |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. NN0 ) |
| 128 |
123 124 127 119
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
| 129 |
128
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) ) ) |
| 130 |
1
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> S e. { RR , CC } ) |
| 131 |
|
simplr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> j e. ( 0 ... M ) ) |
| 132 |
49
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ph ) |
| 133 |
|
simpr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> x e. X ) |
| 134 |
132 133 131
|
3jca |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> ( ph /\ x e. X /\ j e. ( 0 ... M ) ) ) |
| 135 |
|
nfcv |
|- F/_ n j |
| 136 |
|
nfv |
|- F/ n ( ph /\ x e. X /\ j e. ( 0 ... M ) ) |
| 137 |
135
|
nfcsb1 |
|- F/_ n [_ j / n ]_ B |
| 138 |
137 79
|
nfel |
|- F/ n [_ j / n ]_ B e. CC |
| 139 |
136 138
|
nfim |
|- F/ n ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) |
| 140 |
|
eleq1 |
|- ( n = j -> ( n e. ( 0 ... M ) <-> j e. ( 0 ... M ) ) ) |
| 141 |
140
|
3anbi3d |
|- ( n = j -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ j e. ( 0 ... M ) ) ) ) |
| 142 |
|
csbeq1a |
|- ( n = j -> B = [_ j / n ]_ B ) |
| 143 |
142
|
eleq1d |
|- ( n = j -> ( B e. CC <-> [_ j / n ]_ B e. CC ) ) |
| 144 |
141 143
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) ) ) |
| 145 |
135 139 144 4
|
vtoclgf |
|- ( j e. ( 0 ... M ) -> ( ( ph /\ x e. X /\ j e. ( 0 ... M ) ) -> [_ j / n ]_ B e. CC ) ) |
| 146 |
131 134 145
|
sylc |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ x e. X ) -> [_ j / n ]_ B e. CC ) |
| 147 |
115 146
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> [_ j / n ]_ B e. CC ) |
| 148 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 149 |
148
|
ad2antlr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 150 |
115 132
|
sylanl2 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ph ) |
| 151 |
|
simpr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> x e. X ) |
| 152 |
150 151 149
|
3jca |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) ) |
| 153 |
|
nfcv |
|- F/_ n ( j + 1 ) |
| 154 |
|
nfv |
|- F/ n ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) |
| 155 |
153
|
nfcsb1 |
|- F/_ n [_ ( j + 1 ) / n ]_ B |
| 156 |
155 79
|
nfel |
|- F/ n [_ ( j + 1 ) / n ]_ B e. CC |
| 157 |
154 156
|
nfim |
|- F/ n ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) |
| 158 |
|
eleq1 |
|- ( n = ( j + 1 ) -> ( n e. ( 0 ... M ) <-> ( j + 1 ) e. ( 0 ... M ) ) ) |
| 159 |
158
|
3anbi3d |
|- ( n = ( j + 1 ) -> ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) <-> ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) ) ) |
| 160 |
|
csbeq1a |
|- ( n = ( j + 1 ) -> B = [_ ( j + 1 ) / n ]_ B ) |
| 161 |
160
|
eleq1d |
|- ( n = ( j + 1 ) -> ( B e. CC <-> [_ ( j + 1 ) / n ]_ B e. CC ) ) |
| 162 |
159 161
|
imbi12d |
|- ( n = ( j + 1 ) -> ( ( ( ph /\ x e. X /\ n e. ( 0 ... M ) ) -> B e. CC ) <-> ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) ) ) |
| 163 |
153 157 162 4
|
vtoclgf |
|- ( ( j + 1 ) e. ( 0 ... M ) -> ( ( ph /\ x e. X /\ ( j + 1 ) e. ( 0 ... M ) ) -> [_ ( j + 1 ) / n ]_ B e. CC ) ) |
| 164 |
149 152 163
|
sylc |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ x e. X ) -> [_ ( j + 1 ) / n ]_ B e. CC ) |
| 165 |
|
simpl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ph ) |
| 166 |
115
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ... M ) ) |
| 167 |
|
nfv |
|- F/ n ( ph /\ j e. ( 0 ... M ) ) |
| 168 |
|
nfcv |
|- F/_ n ( ( S Dn ( x e. X |-> A ) ) ` j ) |
| 169 |
56 137
|
nfmpt |
|- F/_ n ( x e. X |-> [_ j / n ]_ B ) |
| 170 |
168 169
|
nfeq |
|- F/ n ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) |
| 171 |
167 170
|
nfim |
|- F/ n ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) |
| 172 |
140
|
anbi2d |
|- ( n = j -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ j e. ( 0 ... M ) ) ) ) |
| 173 |
|
fveq2 |
|- ( n = j -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` j ) ) |
| 174 |
142
|
mpteq2dv |
|- ( n = j -> ( x e. X |-> B ) = ( x e. X |-> [_ j / n ]_ B ) ) |
| 175 |
173 174
|
eqeq12d |
|- ( n = j -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) ) |
| 176 |
172 175
|
imbi12d |
|- ( n = j -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) ) ) |
| 177 |
171 176 5
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) |
| 178 |
165 166 177
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` j ) = ( x e. X |-> [_ j / n ]_ B ) ) |
| 179 |
178
|
eqcomd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> [_ j / n ]_ B ) = ( ( S Dn ( x e. X |-> A ) ) ` j ) ) |
| 180 |
179
|
oveq2d |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> [_ j / n ]_ B ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) |
| 181 |
165 94
|
syl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( x e. X |-> A ) e. ( CC ^pm S ) ) |
| 182 |
|
dvnp1 |
|- ( ( S C_ CC /\ ( x e. X |-> A ) e. ( CC ^pm S ) /\ j e. NN0 ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) |
| 183 |
123 181 127 182
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) ) |
| 184 |
183
|
eqcomd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( ( S Dn ( x e. X |-> A ) ) ` j ) ) = ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) ) |
| 185 |
148
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
| 186 |
165 185
|
jca |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) ) |
| 187 |
|
nfv |
|- F/ n ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) |
| 188 |
|
nfcv |
|- F/_ n ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) |
| 189 |
56 155
|
nfmpt |
|- F/_ n ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) |
| 190 |
188 189
|
nfeq |
|- F/ n ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) |
| 191 |
187 190
|
nfim |
|- F/ n ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
| 192 |
158
|
anbi2d |
|- ( n = ( j + 1 ) -> ( ( ph /\ n e. ( 0 ... M ) ) <-> ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) ) ) |
| 193 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) ) |
| 194 |
160
|
mpteq2dv |
|- ( n = ( j + 1 ) -> ( x e. X |-> B ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
| 195 |
193 194
|
eqeq12d |
|- ( n = ( j + 1 ) -> ( ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) <-> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) |
| 196 |
192 195
|
imbi12d |
|- ( n = ( j + 1 ) -> ( ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` n ) = ( x e. X |-> B ) ) <-> ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) ) |
| 197 |
153 191 196 5
|
vtoclgf |
|- ( ( j + 1 ) e. ( 0 ... M ) -> ( ( ph /\ ( j + 1 ) e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) ) |
| 198 |
185 186 197
|
sylc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( S Dn ( x e. X |-> A ) ) ` ( j + 1 ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
| 199 |
180 184 198
|
3eqtrd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> [_ j / n ]_ B ) ) = ( x e. X |-> [_ ( j + 1 ) / n ]_ B ) ) |
| 200 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> C e. CC ) |
| 201 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> C =/= 0 ) |
| 202 |
130 147 164 199 200 201
|
dvmptdivc |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 203 |
202
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 204 |
129 122 203
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 205 |
204
|
eqcomd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) = ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) ) |
| 206 |
205 120 122
|
3eqtrrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( S _D ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 207 |
120 122 206
|
3eqtrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 208 |
107 108 112 207
|
syl21anc |
|- ( ( j e. ( 0 ..^ M ) /\ ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) /\ ph ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) |
| 209 |
208
|
3exp |
|- ( j e. ( 0 ..^ M ) -> ( ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` j ) = ( x e. X |-> ( [_ j / n ]_ B / C ) ) ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` ( j + 1 ) ) = ( x e. X |-> ( [_ ( j + 1 ) / n ]_ B / C ) ) ) ) ) |
| 210 |
16 22 28 36 106 209
|
fzind2 |
|- ( n e. ( 0 ... M ) -> ( ph -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) ) |
| 211 |
9 10 210
|
sylc |
|- ( ( ph /\ n e. ( 0 ... M ) ) -> ( ( S Dn ( x e. X |-> ( A / C ) ) ) ` n ) = ( x e. X |-> ( B / C ) ) ) |