Description: X is a subset of CC . This statement is very often used when computing derivatives. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdmsscn.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvdmsscn.x | ⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | ||
| Assertion | dvdmsscn | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdmsscn.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvdmsscn.x | ⊢ ( 𝜑 → 𝑋 ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ) | |
| 3 | restsspw | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝑆 ) ⊆ 𝒫 𝑆 | |
| 4 | 3 2 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ 𝒫 𝑆 ) |
| 5 | elpwi | ⊢ ( 𝑋 ∈ 𝒫 𝑆 → 𝑋 ⊆ 𝑆 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
| 7 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) |
| 9 | 6 8 | sstrd | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |