| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvdszrcl |
|- ( N || A -> ( N e. ZZ /\ A e. ZZ ) ) |
| 2 |
|
dvdsmod0 |
|- ( ( N e. NN /\ N || A ) -> ( A mod N ) = 0 ) |
| 3 |
2
|
3ad2antl2 |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ N || A ) -> ( A mod N ) = 0 ) |
| 4 |
3
|
ex |
|- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( N || A -> ( A mod N ) = 0 ) ) |
| 5 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> B e. NN ) |
| 6 |
5
|
0expd |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( 0 ^ B ) = 0 ) |
| 7 |
6
|
oveq1d |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( 0 ^ B ) mod N ) = ( 0 mod N ) ) |
| 8 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> A e. ZZ ) |
| 9 |
|
0zd |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> 0 e. ZZ ) |
| 10 |
|
nnnn0 |
|- ( B e. NN -> B e. NN0 ) |
| 11 |
10
|
3ad2ant3 |
|- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> B e. NN0 ) |
| 12 |
11
|
adantr |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> B e. NN0 ) |
| 13 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 14 |
13
|
3ad2ant2 |
|- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> N e. RR+ ) |
| 15 |
14
|
adantr |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> N e. RR+ ) |
| 16 |
|
simpr |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( A mod N ) = 0 ) |
| 17 |
|
0mod |
|- ( N e. RR+ -> ( 0 mod N ) = 0 ) |
| 18 |
15 17
|
syl |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( 0 mod N ) = 0 ) |
| 19 |
16 18
|
eqtr4d |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( A mod N ) = ( 0 mod N ) ) |
| 20 |
|
modexp |
|- ( ( ( A e. ZZ /\ 0 e. ZZ ) /\ ( B e. NN0 /\ N e. RR+ ) /\ ( A mod N ) = ( 0 mod N ) ) -> ( ( A ^ B ) mod N ) = ( ( 0 ^ B ) mod N ) ) |
| 21 |
8 9 12 15 19 20
|
syl221anc |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( A ^ B ) mod N ) = ( ( 0 ^ B ) mod N ) ) |
| 22 |
7 21 19
|
3eqtr4d |
|- ( ( ( A e. ZZ /\ N e. NN /\ B e. NN ) /\ ( A mod N ) = 0 ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) |
| 23 |
22
|
ex |
|- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( ( A mod N ) = 0 -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) |
| 24 |
4 23
|
syld |
|- ( ( A e. ZZ /\ N e. NN /\ B e. NN ) -> ( N || A -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) |
| 25 |
24
|
3exp |
|- ( A e. ZZ -> ( N e. NN -> ( B e. NN -> ( N || A -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) |
| 26 |
25
|
com24 |
|- ( A e. ZZ -> ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) |
| 27 |
26
|
adantl |
|- ( ( N e. ZZ /\ A e. ZZ ) -> ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) ) |
| 28 |
1 27
|
mpcom |
|- ( N || A -> ( B e. NN -> ( N e. NN -> ( ( A ^ B ) mod N ) = ( A mod N ) ) ) ) |
| 29 |
28
|
3imp31 |
|- ( ( N e. NN /\ B e. NN /\ N || A ) -> ( ( A ^ B ) mod N ) = ( A mod N ) ) |