| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvsubcncf.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvsubcncf.f |
|- ( ph -> F : X --> CC ) |
| 3 |
|
dvsubcncf.g |
|- ( ph -> G : X --> CC ) |
| 4 |
|
dvsubcncf.fdv |
|- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
| 5 |
|
dvsubcncf.gdv |
|- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
| 6 |
|
cncff |
|- ( ( S _D F ) e. ( X -cn-> CC ) -> ( S _D F ) : X --> CC ) |
| 7 |
|
fdm |
|- ( ( S _D F ) : X --> CC -> dom ( S _D F ) = X ) |
| 8 |
4 6 7
|
3syl |
|- ( ph -> dom ( S _D F ) = X ) |
| 9 |
|
cncff |
|- ( ( S _D G ) e. ( X -cn-> CC ) -> ( S _D G ) : X --> CC ) |
| 10 |
|
fdm |
|- ( ( S _D G ) : X --> CC -> dom ( S _D G ) = X ) |
| 11 |
5 9 10
|
3syl |
|- ( ph -> dom ( S _D G ) = X ) |
| 12 |
1 2 3 8 11
|
dvsubf |
|- ( ph -> ( S _D ( F oF - G ) ) = ( ( S _D F ) oF - ( S _D G ) ) ) |
| 13 |
4 5
|
subcncff |
|- ( ph -> ( ( S _D F ) oF - ( S _D G ) ) e. ( X -cn-> CC ) ) |
| 14 |
12 13
|
eqeltrd |
|- ( ph -> ( S _D ( F oF - G ) ) e. ( X -cn-> CC ) ) |