| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmulcncf.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmulcncf.f |
|- ( ph -> F : X --> CC ) |
| 3 |
|
dvmulcncf.g |
|- ( ph -> G : X --> CC ) |
| 4 |
|
dvmulcncf.fdv |
|- ( ph -> ( S _D F ) e. ( X -cn-> CC ) ) |
| 5 |
|
dvmulcncf.gdv |
|- ( ph -> ( S _D G ) e. ( X -cn-> CC ) ) |
| 6 |
|
cncff |
|- ( ( S _D F ) e. ( X -cn-> CC ) -> ( S _D F ) : X --> CC ) |
| 7 |
|
fdm |
|- ( ( S _D F ) : X --> CC -> dom ( S _D F ) = X ) |
| 8 |
4 6 7
|
3syl |
|- ( ph -> dom ( S _D F ) = X ) |
| 9 |
|
cncff |
|- ( ( S _D G ) e. ( X -cn-> CC ) -> ( S _D G ) : X --> CC ) |
| 10 |
|
fdm |
|- ( ( S _D G ) : X --> CC -> dom ( S _D G ) = X ) |
| 11 |
5 9 10
|
3syl |
|- ( ph -> dom ( S _D G ) = X ) |
| 12 |
1 2 3 8 11
|
dvmulf |
|- ( ph -> ( S _D ( F oF x. G ) ) = ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) ) |
| 13 |
|
ax-resscn |
|- RR C_ CC |
| 14 |
|
sseq1 |
|- ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) |
| 15 |
13 14
|
mpbiri |
|- ( S = RR -> S C_ CC ) |
| 16 |
|
eqimss |
|- ( S = CC -> S C_ CC ) |
| 17 |
15 16
|
pm3.2i |
|- ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) |
| 18 |
|
elpri |
|- ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) |
| 19 |
1 18
|
syl |
|- ( ph -> ( S = RR \/ S = CC ) ) |
| 20 |
|
pm3.44 |
|- ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) |
| 21 |
17 19 20
|
mpsyl |
|- ( ph -> S C_ CC ) |
| 22 |
|
dvbsss |
|- dom ( S _D F ) C_ S |
| 23 |
8 22
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
| 24 |
|
dvcn |
|- ( ( ( S C_ CC /\ G : X --> CC /\ X C_ S ) /\ dom ( S _D G ) = X ) -> G e. ( X -cn-> CC ) ) |
| 25 |
21 3 23 11 24
|
syl31anc |
|- ( ph -> G e. ( X -cn-> CC ) ) |
| 26 |
4 25
|
mulcncff |
|- ( ph -> ( ( S _D F ) oF x. G ) e. ( X -cn-> CC ) ) |
| 27 |
|
dvcn |
|- ( ( ( S C_ CC /\ F : X --> CC /\ X C_ S ) /\ dom ( S _D F ) = X ) -> F e. ( X -cn-> CC ) ) |
| 28 |
21 2 23 8 27
|
syl31anc |
|- ( ph -> F e. ( X -cn-> CC ) ) |
| 29 |
5 28
|
mulcncff |
|- ( ph -> ( ( S _D G ) oF x. F ) e. ( X -cn-> CC ) ) |
| 30 |
26 29
|
addcncff |
|- ( ph -> ( ( ( S _D F ) oF x. G ) oF + ( ( S _D G ) oF x. F ) ) e. ( X -cn-> CC ) ) |
| 31 |
12 30
|
eqeltrd |
|- ( ph -> ( S _D ( F oF x. G ) ) e. ( X -cn-> CC ) ) |