Metamath Proof Explorer


Theorem edgfndxidOLD

Description: Obsolete version of edgfndxid as of 28-Oct-2024. The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion edgfndxidOLD
|- ( G e. V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( G e. V -> G e. V )
2 df-edgf
 |-  .ef = Slot ; 1 8
3 1nn0
 |-  1 e. NN0
4 8nn
 |-  8 e. NN
5 3 4 decnncl
 |-  ; 1 8 e. NN
6 1 2 5 strndxid
 |-  ( G e. V -> ( G ` ( .ef ` ndx ) ) = ( .ef ` G ) )
7 6 eqcomd
 |-  ( G e. V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) )