Metamath Proof Explorer


Theorem edgfndxid

Description: The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Assertion edgfndxid
|- ( G e. V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) )

Proof

Step Hyp Ref Expression
1 edgfid
 |-  .ef = Slot ( .ef ` ndx )
2 id
 |-  ( G e. V -> G e. V )
3 1 2 strfvnd
 |-  ( G e. V -> ( .ef ` G ) = ( G ` ( .ef ` ndx ) ) )