Metamath Proof Explorer


Theorem edgfndxid

Description: The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Assertion edgfndxid ( 𝐺𝑉 → ( .ef ‘ 𝐺 ) = ( 𝐺 ‘ ( .ef ‘ ndx ) ) )

Proof

Step Hyp Ref Expression
1 edgfid .ef = Slot ( .ef ‘ ndx )
2 id ( 𝐺𝑉𝐺𝑉 )
3 1 2 strfvnd ( 𝐺𝑉 → ( .ef ‘ 𝐺 ) = ( 𝐺 ‘ ( .ef ‘ ndx ) ) )