Metamath Proof Explorer


Theorem edgfndxidOLD

Description: Obsolete version of edgfndxid as of 28-Oct-2024. The value of the edge function extractor is the value of the corresponding slot of the structure. (Contributed by AV, 21-Sep-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion edgfndxidOLD G V ef G = G ef ndx

Proof

Step Hyp Ref Expression
1 id G V G V
2 df-edgf ef = Slot 18
3 1nn0 1 0
4 8nn 8
5 3 4 decnncl 18
6 1 2 5 strndxid G V G ef ndx = ef G
7 6 eqcomd G V ef G = G ef ndx