Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ee03an.1 | |- ph |
|
| ee03an.2 | |- ( ps -> ( ch -> ( th -> ta ) ) ) |
||
| ee03an.3 | |- ( ( ph /\ ta ) -> et ) |
||
| Assertion | ee03an | |- ( ps -> ( ch -> ( th -> et ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ee03an.1 | |- ph |
|
| 2 | ee03an.2 | |- ( ps -> ( ch -> ( th -> ta ) ) ) |
|
| 3 | ee03an.3 | |- ( ( ph /\ ta ) -> et ) |
|
| 4 | 3 | ex | |- ( ph -> ( ta -> et ) ) |
| 5 | 1 2 4 | ee03 | |- ( ps -> ( ch -> ( th -> et ) ) ) |