Metamath Proof Explorer
Description: Conjunction form of ee03 . (Contributed by Alan Sare, 18-Jul-2011)
(Proof modification is discouraged.) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
ee03an.1 |
⊢ 𝜑 |
|
|
ee03an.2 |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) |
|
|
ee03an.3 |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) |
|
Assertion |
ee03an |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜂 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ee03an.1 |
⊢ 𝜑 |
2 |
|
ee03an.2 |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜏 ) ) ) |
3 |
|
ee03an.3 |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) |
4 |
3
|
ex |
⊢ ( 𝜑 → ( 𝜏 → 𝜂 ) ) |
5 |
1 2 4
|
ee03 |
⊢ ( 𝜓 → ( 𝜒 → ( 𝜃 → 𝜂 ) ) ) |