Metamath Proof Explorer


Theorem ee121

Description: e121 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee121.1
|- ( ph -> ps )
ee121.2
|- ( ph -> ( ch -> th ) )
ee121.3
|- ( ph -> ta )
ee121.4
|- ( ps -> ( th -> ( ta -> et ) ) )
Assertion ee121
|- ( ph -> ( ch -> et ) )

Proof

Step Hyp Ref Expression
1 ee121.1
 |-  ( ph -> ps )
2 ee121.2
 |-  ( ph -> ( ch -> th ) )
3 ee121.3
 |-  ( ph -> ta )
4 ee121.4
 |-  ( ps -> ( th -> ( ta -> et ) ) )
5 1 a1d
 |-  ( ph -> ( ch -> ps ) )
6 3 a1d
 |-  ( ph -> ( ch -> ta ) )
7 5 2 6 4 ee222
 |-  ( ph -> ( ch -> et ) )