Metamath Proof Explorer


Theorem ee122

Description: e122 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee122.1
|- ( ph -> ps )
ee122.2
|- ( ph -> ( ch -> th ) )
ee122.3
|- ( ph -> ( ch -> ta ) )
ee122.4
|- ( ps -> ( th -> ( ta -> et ) ) )
Assertion ee122
|- ( ph -> ( ch -> et ) )

Proof

Step Hyp Ref Expression
1 ee122.1
 |-  ( ph -> ps )
2 ee122.2
 |-  ( ph -> ( ch -> th ) )
3 ee122.3
 |-  ( ph -> ( ch -> ta ) )
4 ee122.4
 |-  ( ps -> ( th -> ( ta -> et ) ) )
5 1 a1d
 |-  ( ph -> ( ch -> ps ) )
6 5 2 3 4 ee222
 |-  ( ph -> ( ch -> et ) )