Metamath Proof Explorer


Theorem ee122

Description: e122 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee122.1 ( 𝜑𝜓 )
ee122.2 ( 𝜑 → ( 𝜒𝜃 ) )
ee122.3 ( 𝜑 → ( 𝜒𝜏 ) )
ee122.4 ( 𝜓 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee122 ( 𝜑 → ( 𝜒𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee122.1 ( 𝜑𝜓 )
2 ee122.2 ( 𝜑 → ( 𝜒𝜃 ) )
3 ee122.3 ( 𝜑 → ( 𝜒𝜏 ) )
4 ee122.4 ( 𝜓 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 1 a1d ( 𝜑 → ( 𝜒𝜓 ) )
6 5 2 3 4 ee222 ( 𝜑 → ( 𝜒𝜂 ) )