Metamath Proof Explorer


Theorem ee212

Description: e212 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee212.1
|- ( ph -> ( ps -> ch ) )
ee212.2
|- ( ph -> th )
ee212.3
|- ( ph -> ( ps -> ta ) )
ee212.4
|- ( ch -> ( th -> ( ta -> et ) ) )
Assertion ee212
|- ( ph -> ( ps -> et ) )

Proof

Step Hyp Ref Expression
1 ee212.1
 |-  ( ph -> ( ps -> ch ) )
2 ee212.2
 |-  ( ph -> th )
3 ee212.3
 |-  ( ph -> ( ps -> ta ) )
4 ee212.4
 |-  ( ch -> ( th -> ( ta -> et ) ) )
5 2 a1d
 |-  ( ph -> ( ps -> th ) )
6 1 5 3 4 ee222
 |-  ( ph -> ( ps -> et ) )