Metamath Proof Explorer


Theorem ee212

Description: e212 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ee212.1 ( 𝜑 → ( 𝜓𝜒 ) )
ee212.2 ( 𝜑𝜃 )
ee212.3 ( 𝜑 → ( 𝜓𝜏 ) )
ee212.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
Assertion ee212 ( 𝜑 → ( 𝜓𝜂 ) )

Proof

Step Hyp Ref Expression
1 ee212.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 ee212.2 ( 𝜑𝜃 )
3 ee212.3 ( 𝜑 → ( 𝜓𝜏 ) )
4 ee212.4 ( 𝜒 → ( 𝜃 → ( 𝜏𝜂 ) ) )
5 2 a1d ( 𝜑 → ( 𝜓𝜃 ) )
6 1 5 3 4 ee222 ( 𝜑 → ( 𝜓𝜂 ) )