Metamath Proof Explorer


Theorem el3v13

Description: New way ( elv , and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021)

Ref Expression
Hypothesis el3v13.1
|- ( ( x e. _V /\ ps /\ z e. _V ) -> th )
Assertion el3v13
|- ( ps -> th )

Proof

Step Hyp Ref Expression
1 el3v13.1
 |-  ( ( x e. _V /\ ps /\ z e. _V ) -> th )
2 1 el3v3
 |-  ( ( x e. _V /\ ps ) -> th )
3 2 el2v1
 |-  ( ps -> th )