Description: New way ( elv , and the theorems beginning with "el2v" or "el3v") to shorten some proofs. (Contributed by Peter Mazsa, 11-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | el3v13.1 | ⊢ ( ( 𝑥 ∈ V ∧ 𝜓 ∧ 𝑧 ∈ V ) → 𝜃 ) | |
Assertion | el3v13 | ⊢ ( 𝜓 → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | el3v13.1 | ⊢ ( ( 𝑥 ∈ V ∧ 𝜓 ∧ 𝑧 ∈ V ) → 𝜃 ) | |
2 | 1 | el3v3 | ⊢ ( ( 𝑥 ∈ V ∧ 𝜓 ) → 𝜃 ) |
3 | 2 | el2v1 | ⊢ ( 𝜓 → 𝜃 ) |