Metamath Proof Explorer


Theorem eldisjs3

Description: Elementhood in the class of disjoints. (Contributed by Peter Mazsa, 5-Sep-2021)

Ref Expression
Assertion eldisjs3
|- ( R e. Disjs <-> ( A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) /\ R e. Rels ) )

Proof

Step Hyp Ref Expression
1 eldisjs2
 |-  ( R e. Disjs <-> ( ,~ `' R C_ _I /\ R e. Rels ) )
2 cosscnvssid3
 |-  ( ,~ `' R C_ _I <-> A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) )
3 2 anbi1i
 |-  ( ( ,~ `' R C_ _I /\ R e. Rels ) <-> ( A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) /\ R e. Rels ) )
4 1 3 bitri
 |-  ( R e. Disjs <-> ( A. u A. v A. x ( ( u R x /\ v R x ) -> u = v ) /\ R e. Rels ) )