Metamath Proof Explorer


Theorem eldisjss

Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021)

Ref Expression
Assertion eldisjss
|- ( A C_ B -> ( ElDisj B -> ElDisj A ) )

Proof

Step Hyp Ref Expression
1 ssres2
 |-  ( A C_ B -> ( `' _E |` A ) C_ ( `' _E |` B ) )
2 1 disjssd
 |-  ( A C_ B -> ( Disj ( `' _E |` B ) -> Disj ( `' _E |` A ) ) )
3 df-eldisj
 |-  ( ElDisj B <-> Disj ( `' _E |` B ) )
4 df-eldisj
 |-  ( ElDisj A <-> Disj ( `' _E |` A ) )
5 2 3 4 3imtr4g
 |-  ( A C_ B -> ( ElDisj B -> ElDisj A ) )