Description: Subclass theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | eldisjss | |- ( A C_ B -> ( ElDisj B -> ElDisj A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres2 | |- ( A C_ B -> ( `' _E |` A ) C_ ( `' _E |` B ) ) |
|
2 | 1 | disjssd | |- ( A C_ B -> ( Disj ( `' _E |` B ) -> Disj ( `' _E |` A ) ) ) |
3 | df-eldisj | |- ( ElDisj B <-> Disj ( `' _E |` B ) ) |
|
4 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
5 | 2 3 4 | 3imtr4g | |- ( A C_ B -> ( ElDisj B -> ElDisj A ) ) |